Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(n+3⋮2n+1\)
\(\Leftrightarrow2\left(n+3\right)⋮2n+1\)
\(\Leftrightarrow2n+6⋮2n+3\)
\(\Leftrightarrow\left(2n+3\right)+3⋮2n+3\)
Vì \(2n+3⋮2n+3\)
\(\Rightarrow6⋮2n+3\)
\(\Rightarrow2n+3\inƯ\left(6\right)=\){
b1 :
a, gọi d là ƯC(2n + 1;2n +2)
=> 2n + 1 chia hết cho d và 2n + 2 chia hết cho d
=> 2n + 2 - 2n - 1 chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> 2n+1/2n+2 là ps tối giản
Bài 1: Với mọi số tự nhiên n, chứng minh các phân số sau là phân số tối giản:
A=2n+1/2n+2
Gọi ƯCLN của chúng là a
Ta có:2n+1 chia hết cho a
2n+2 chia hết cho a
- 2n+2 - 2n+1
- 1 chia hết cho a
- a= 1
Vậy 2n+1/2n+2 là phân số tối giản
B=2n+3/3n+5
Gọi ƯCLN của chúng là a
2n+3 chia hết cho a
3n+5 chia hết cho a
Suy ra 6n+9 chia hết cho a
6n+10 chia hết cho a
6n+10-6n+9
1 chia hết cho a
Vậy 2n+3/3n+5 là phân số tối giản
Mình chỉ biết thế thôi!
#hok_tot#
Baif 2:a:
Co:A=n+1/n-2=n-2+3/n-2=n-2/n-2+3/n-2
A=1+3/n-2
=>A thuoc Z <=>3/n-2 thuoc Z <=>3 chia het cho n-2
=>n-2 thuoc U(3) <=>n-2 thuoc (-1;1;-3;3)
<=>n thuoc (1;3;-1;5)
b;
Co:A=1+3/n-2
Ta co A lon nhat <=>n-2 la so nguyen duong nho nhat
<=>n-2=1<=>n=3
Khi do A=1+3/3-2=4
Vay GTLN cua A=4 tai n=3
Bài 2:
a)|x| < 3
x\(\in\){-2;-1;0;1;2}
b)|x - 4 | < 3
x\(\in\){ 6 ; 5 ; 4 ; 3 ; 2 }
c) | x + 10 | < 2
x\(\in\){ -2 ; -10 }
Bài 1:
A = 1 + 2 - 3 + 4 + 5 - 6 +...+98 - 99
A = (1 + 4 + 7 +...+97) + [(2-3)+(5-6)+...+(98-99)]
A = 1617 + [(-1)+(-1)+...+(-1)]
A = 1617 + (-49)
A = +(1617-49) = A = 1568
B = - 2 - 4 + 6 - 8 + 10 + 12 - .... + 60
B =
2)
a) \(x\in\left\{2;1;0;-1;-2\right\}\)
b) \(x\in\left\{6;-6;5;-5;4\right\}\)
c) \(x\in\left\{-9;-11;-10\right\}\)
3)
\(\left(a;b\right)\in\left\{\left(0;1\right);\left(0;-1\right);\left(1;0\right);\left(-1;0\right)\right\}\)
\(4x-xy+2y=3\)
\(\Rightarrow x\left(4-y\right)-8+2y=3-8\)
\(\Rightarrow x\left(4-y\right)-2\left(4-y\right)=-5\)
\(\Rightarrow\left(x-2\right)\left(4-y\right)=-5\)
\(\Rightarrow\left(x-2\right)\left(y-4\right)=5\)
\(\Rightarrow\left(x-2\right);\left(y-4\right)\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Tự xét bảng
\(3y-xy-2x-5=0\)
\(\Rightarrow y\left(3-x\right)-2x=5\)
\(\Rightarrow y\left(3-x\right)+6-2x=5+6\)
\(\Rightarrow y\left(3-x\right)+2\left(3-x\right)=11\)
\(\Rightarrow\left(y+1\right)\left(3-x\right)=11\)
\(\Rightarrow\left(3-x\right);\left(y+1\right)\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)
Tự xét
\(2xy-x-y=100\)
\(\Rightarrow x\left(2y-1\right)-y=100\)
\(2x\left(2y-1\right)-\left(2y-1\right)=100+1\)
\(\left(2x-1\right)\left(2y-1\right)=101\)
\(\Rightarrow\left(2x-1\right);\left(2y-1\right)\inƯ\left(101\right)=\left\{\pm1;\pm101\right\}\)
Tự xét bảng
P/s : bài 3 có gì sai ko ?
1.a)\(n+3⋮4n-1\)nên bội của n - 3 là 4(n - 3) = 4n - 12 = 4n - 1 - 11 chia hết cho 4n - 1 =>\(11⋮4n-1\)
=> 4n - 1 = -11 ; -1 ; 1 ; 11 => 4n = -10 ; 0 ; 2 ; 12 => n = 0 ; 3 (vì\(n\in Z\))
Thử lại :
Vậy n = 0
b)\(1-3n⋮2n+1\)nên bội của 1 - 3n là -2(1 - 3n) = 6n - 2 = 6n + 3 - 5 = 3(2n + 1) - 5 chia hết cho 2n + 1
=> 2n + 1 = -5 ; -1 ; 1 ; 5 => 2n = -6 ; -2 ; 0 ; 4 => n = -3 ; -1 ; 0 ; 2
Thử lại :
Vậy n = -3 ; -1 ; 0 ; 2
2.Nếu n chẵn thì\(n.\left(5n+3\right)⋮2\)
Nếu n lẻ thì 5n lẻ mà 3 lẻ nên 5n + 3 chẵn =>\(n.\left(5n+3\right)⋮2\)
Vậy\(n.\left(5n+3\right)⋮2\forall n\in Z\)
3.a)\(\left|3x-6\right|\ge0\Rightarrow\left|3x-6\right|+3\ge3\)
Vậy GTNN của\(\left|3x-6\right|+3\)là 3 khi :\(\left|3x-6\right|=0\Leftrightarrow3x-6=0\Leftrightarrow3x=6\Leftrightarrow x=2\)
b)\(\left(x-1\right)^2\ge0\Rightarrow-2+\left(x-1\right)^2\ge-2\)
Vậy GTNN của -2 + (x - 1)2 là -2 khi : (x - 1)2 = 0 <=> x - 1 = 0 <=> x = 1