Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Vì △ABC cân tại A => AB = AC và ABC = ACB
Xét △ABD và △ACE
Có: AB = AC (cmt)
ABD = ACE (cmt)
BD = CE(gt)
=> △ABD = △ACE (c.g.c)
b, Xét △AHD vuông tại H và △AIE vuông tại I
Có: AD = AE (△ABD = △ACE)
HAD = IAE (△ABD = △ACE)
=> △AHD = △AIE (ch-gn)
=> HD = IE (2 cạnh tương ứng)
c, Xét △AHI có: AH = AI (△AHD = △AIE) => △AHI cân tại A => AHI = (180o - HAI) : 2 (1)
Vì △ABC cân tại A => ABC = (180o - BAC) : 2 (2)
Từ (1) và (2) => AHI = ABC
Mà 2 góc này nằm ở vị trí đồng vị
=> HI // BC (dhnb)
d, Gọi { O } = HD ∩ EI
Xét △BAM và △CAM
Có: AB = AC (cmt)
MB = MC (gt)
AM là cạnh chung
=> △BAM = △CAM (c.c.c)
=> BAM = CAM (2 góc tương ứng)
Mà AM nằm giữa AB, AC
=> AM là phân giác của BAC
Xét △HAO vuông tại H và △IAO vuông tại I
Có: AH = AI (cmt)
AO là cạnh chung
=> △HAO = △IAO (ch-cgv)
=> HAO = IAO (2 góc tương ứng)
=> AO là phân giác của BAC
Mà AM là phân giác của BAC
=> AO ≡ AM
=> 3 điểm A, M, O thẳng hàng
=> Ba đường thẳng AM, DH, EI cắt nhau tại một điểm.
`a,`
Xét `2 \Delta` vuông `AHD` và ` AED`:
\(\text{AD chung}\)
\(\text{AH = AE (gt)}\)
`=> \Delta AHD = \Delta AED (ch-cgv)`
`b,`
Vì `\Delta AHD = \Delta AED (a)`
`->`\(\text{DH = DE (2 cạnh tương ứng) (1)}\)
\(\text{Xét }\Delta\text{DEC :}\)
\(\widehat{\text{DEC}}=90^0\)
`@` Theo định lý quan hệ giữa góc và cạnh đối diện
`->`\(\text{DC là cạnh lớn nhất}\)
`->`\(\text{DC > DE (2)}\)
Từ \(\left(1\right)\) và \(\left(2\right)\)
`->`\(\text{DC > DH.}\)
`c,` cho mình bỏ câu này;-;;; xin lỗi cậu nhiều;-;.
Câu a
Xét tam giác ABD và AMD có
AB = AM từ gt
Góc BAD = MAD vì AD phân giác BAM
AD chung
=> 2 tam guacs bằng nhau
Câu b
Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD
Bd = bm vì 2 tam giác ở câu a bằng nhau
Góc BDE bằng MDC đối đỉnh
=> 2 tam giác bằng nhau
TA CÓ TAM GIÁC ABC VUÔNG TẠI B , AD ĐL PYTAGO TA CÓ
\(AB^2+BC^2=AC^2\)
=>\(8^2+15^2=289=>AC^{ }=17\)
=>AC=17 CM
Bài toán 1: (Hình a)
Gọi đường thẳng qua N vuông góc với AN cắt AC tại R, qua P kẻ đường thẳng song song với BC. Đường thẳng này cắt AM,AN,BC lần lượt tại S,T,K.
Ta thấy \(\Delta\)APR có AN vừa là đường cao, đường phân giác => \(\Delta\)APR cân tại A => AP = AR, NP = NR
Áp dụng hệ quả ĐL Thales \(\frac{BM}{PS}=\frac{CM}{KS}\left(=\frac{AM}{AS}\right)\)=> PS = KS
Áp dụng ĐL đường phân giác trong tam giác: \(\frac{TK}{TP}=\frac{AK}{AP}\Rightarrow\frac{ST+SK}{TP}=\frac{AK}{AR}\)
\(\Rightarrow\frac{2ST+PT}{TP}=\frac{AR+RK}{AR}\Rightarrow\frac{2ST}{TP}=\frac{RK}{AR}\)
Dễ thấy NS là đường trung bình của \(\Delta\)RKP => RK = 2NS. Do đó \(\frac{ST}{TP}=\frac{NS}{AR}\)
Đồng thời NS // AR, suy ra \(\frac{ST}{TP}=\frac{NS}{AR}=\frac{SQ}{QA}\)=> QT // AP (ĐL Thaels đảo)
Mà AP vuông góc PO nên QT vuông góc PO. Từ đây suy ra T là trực tâm của \(\Delta\)POQ
=> QO vuông góc PT. Lại có PT // BC nên QO vuông góc BC (đpcm).
Bài toán 2: (Hình b)
Ta có IB = IC => \(\Delta\)BIC cân tại I => ^IBC = ^ICB = ^ACB/2 => \(\Delta\)MCI ~ \(\Delta\)MBC (g.g)
=> MC2 = MI.MB. Xét \(\Delta\)AHC có ^AHC = 900 , trung tuyến HM => HM = MC
Do đó MH2 = MI.MB => \(\Delta\)MIH ~ \(\Delta\)MHB (c.g.c) => ^MHI = ^MBH = ^MBC = ^MCI
=> Tứ giác CHIM nội tiếp. Mà CI là phân giác ^MCH nên (IH = (IM hay IM = IH (đpcm).
Bài toán 3: (Hình c)
a) Gọi đường thẳng qua C vuông góc CB cắt MK tại F, DE cắt BC tại Q, CG cắt BD tại I.
Áp dụng ĐL Melelaus:\(\frac{MB}{MC}.\frac{GA}{GB}.\frac{DC}{DA}=1\)suy ra \(\frac{DC}{DA}=2\)=> A là trung điểm DC
Khi đó G là trọng tâm của \(\Delta\)BCD. Do CG cắt BD tại I nên I là trung điểm BD
Dễ thấy \(\Delta\)BCD vuông cân tại B => BI = CM (=BC/2). Từ đó \(\Delta\)IBC = \(\Delta\)MCF (g.c.g)
=> CB = CF => \(\Delta\)BCF vuông cân ở C => ^CBA = ^CBF (=450) => B,A,F thẳng hàng
=> CA vuông góc GF. Từ đó K là trực tâm của \(\Delta\)CGF => GK vuông góc CF => GK // CM
Theo bổ đề hình thang thì P,Q lần lượt là trung điểm GK,CM. Kết hợp \(\Delta\)CEM vuông ở E
=> EQ=CM/2. Áp dụng ĐL Melelaus có \(\frac{GD}{GM}.\frac{EQ}{ED}.\frac{CM}{CQ}=1\)=> \(\frac{EQ}{ED}=\frac{1}{4}\)
=> \(\frac{ED}{CM}=2\)=> DE = 2CM = BC (đpcm).
b) Theo câu a thì EQ là trung tuyến của \(\Delta\)CEM vuông tại E => EQ = QC => ^QEC = ^QCE
Vì vậy ^PEG = ^QEC = ^QCE = ^PGE => \(\Delta\)EPG cân tại P => PG = PE (đpcm).
Tham khảo
Câu hỏi của Hot girl 2k5 - Toán lớp 7 - Học toán với OnlineMath
mik ko hieu cau c cho lam, ai giang giup mik cau c voi :((
2/ (Bạn tự vẽ hình giùm)
a/ Ta có DE // BC (gt)
=> \(\widehat{ADE}=\widehat{ABC}\)ở vị trí đồng vị
và \(\widehat{AED}=\widehat{ACB}\)ở vị trí đồng vị
Mà \(\widehat{ABC}=\widehat{ACB}\)(\(\Delta ABC\)cân tại A)
=> \(\widehat{ADE}=\widehat{AED}\)
=> \(\Delta ADE\)cân tại A
b/ Ta có \(\widehat{AED}=\widehat{CEG}\)(đối đỉnh)
và \(\widehat{ADE}=\widehat{BDF}\)(đối đỉnh)
và \(\widehat{ADE}=\widehat{AED}\)(cm câu a)
=> \(\widehat{CEG}=\widehat{BDF}\)(1)
Ta lại có \(\widehat{ECG}=90^o-\widehat{CEG}\)(\(\Delta CEG\)vuông tại G)
và \(\widehat{DBF}=90^o-\widehat{DFB}\)(\(\Delta BDF\)vuông tại F)
=> \(\widehat{ECG}=\widehat{DBF}\)(vì \(\widehat{CEG}=\widehat{BDF}\)) (2)
Ta tiếp tục có AB = AC (\(\Delta ABC\)cân tại A)
và AD = AE (\(\Delta ADE\)cân tại A)
=> AB - AD = AC - AE
=> DB = EC (3)
Từ (1), (2) và (3) => \(\Delta BFD=\Delta CGE\)(g. c. g) (đpcm)
c/ Ta có \(\widehat{ADE}=\widehat{AED}\)(cm câu a)
=> \(180^o-\widehat{ADE}=180^o-\widehat{AED}\)
=> \(\widehat{ADF}=\widehat{AEG}\)
và AD = AE (\(\Delta ADE\)cân tại A)
và DF = GE (\(\Delta BFD=\Delta CGE\))
=> \(\Delta ADF=\Delta AEG\)(c. g. c)
=> AF = AG (hai cạnh tương ứng) (đpcm)
d/ Ta có O là giao điểm của hai đường cao EI và DH của \(\Delta AGF\)
=> O là trực tâm của \(\Delta AGF\)
=> AO là đường cao thứ ba của \(\Delta AGF\)
=> AO \(\perp\)GF
Mà GF // BC
=> AO \(\perp\)BC
=> AO là đường cao của \(\Delta ABC\)
Mà \(\Delta ABC\)cân tại A
=> AO là đường phân giác của \(\Delta ABC\)
hay AO là tia phân giác của \(\widehat{BAC}\)(đpcm)
e/ Ta có DE \(\equiv\)BC
và AO \(\perp\)BC
=> AO \(\perp\)DE (đpcm)
phần \(AC\perp OG\)mình đang giải.
đề dài quá
đọc cx ngại oy ns j lm