K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 3 2017

Ta có: \(-\left|1,5-x\right|\le0\forall x\)

\(\Rightarrow-\left|1,5-x\right|-2\le-2\forall x\)

Dấu \("="\) xảy ra khi \(\left|1,5-x\right|=0\)

\(\Rightarrow1,5-x=0\Rightarrow x=1,5\)

Vậy \(Min_A=-2\) khi \(x=1,5.\)

2 tháng 3 2017

-2

17 tháng 10 2017

Bài 2:

Ta có: \(\left.\begin{matrix} \frac{x}{4} = \frac{y}{5} & & \\ \frac{y}{5} = \frac{z}{2} & & \end{matrix}\right\}\)

=> \(\frac{x}{4} = \frac{y}{5} = \frac{z}{2}\)

Theo tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{x}{4} = \frac{y}{5} = \frac{z}{2} = \frac{x - y + z}{4 - 5 + 2}= \frac{98}{1}= 98\)

=> x = 98 * 4 = 392

y = 98 * 5 = 490

z = 196

Vậy x = 392, y = 490, z = 196

Bài 3:

Gọi x,y lần lượt là số cây trồng của lớp 7A, 7B

Theo đề bài ta có: \(\frac{x}{4} = \frac{y}{5}\) và y - x = 12

Theo tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{x}{4} = \frac{y}{5}= \frac{y - x}{5 - 4}= \frac{12}{1}= 12\)

=> x = 12 * 4 = 48

y = 12 * 5= 60

Vậy lớp 7A trồng 48 cây

.......lớp 7B trồng 60 cây

17 tháng 10 2017

Cam on!vui

24 tháng 10 2017

Bài này chỉ tìm được \(GTNN\) thôi bạn nhé!

\(F=\dfrac{1}{2}\left(x-1\right)^2+\dfrac{1}{3}\\ \text{Do }\left(x-1\right)^2\ge0\forall x\\ \Rightarrow\dfrac{1}{2}\left(x-1\right)^2\ge0\forall x\\ F=\dfrac{1}{2}\left(x-1\right)^2+\dfrac{1}{3}\ge\dfrac{1}{3}\forall x\)

Dấu \("="\) xảy ra khi :

\(\left(x-1\right)^2=0\\ \Leftrightarrow x-1=0\\ \Leftrightarrow x=1\)

Vậy \(F_{\left(Min\right)}=3\) khi \(x=1\)

11 tháng 11 2016

Ta nhận thấy \(2x+3y\)\(x^2+y^2\) là các thành phần của các đẳng thức Bunhiacốpxki \(\left(ax+by\right)^2\le\left(a^2+b^2\right)\left(x^2+y^2\right)\) với \(a=2,b=3.\)

Theo bất đẳng thức trên :

\(\left(2x+3y\right)^2\le\left(2^2+3^2\right).52\Rightarrow\left(2x+3y\right)^2\le13.13.4\)

\(\Rightarrow\left|2x+3y\right|\le26\Rightarrow2x+3y\le26.\)Vậy \(MAX_A=26\Leftrightarrow\begin{cases}\frac{x}{2}=\frac{y}{3}\\2x+3y\ge0\end{cases}\)

Thay \(y=\frac{3x}{2}\) vào \(x^2+y^2=52,\)ta được \(x^2+\frac{9x^2}{4}=52\).Giai phương trình này được : \(x=\pm4\).

Với \(x=4\) thì \(y=6\) , thõa mãn ( 2 ) . Với \(x=-4\) thì \(y=-6\), không thõa mãn (2 )

11 tháng 11 2016

copy bài đứa khác

2 tháng 10 2015

1)x=1,5

2)-5

3)14

4)0 có cap a;b thoa man de bai(điền số 0 vào)

5)-2011,đúng rồi đấy

6)Pmin=3,7

tick nhé,tớ thi violymic rồi

28 tháng 10 2019

a,  1, Vì |x - 2019| ≥ 0 ; (y - 1)2020 ≥ 0 => |x - 2019| + (y - 1)2020 ≥ 0 => |x - 2019| + (y - 1)2020​ + (-2) ≥ (-2) => A ≥ -2

Dấu " = " xảy ra <=> \(\hept{\begin{cases}x-2019=0\\y-1=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2019\\y=1\end{cases}}\)

Vậy GTNN A = -2 khi x = 2019 và y = 1

2, Ta có: |x - 3| = |3 - x|

Vì |x - 3| + |x + 4| ≥ |x - 3 + x + 4| = |1| = 1

=> C ≥ 1 - 5 => C ≥ -4

Dấu " = " xảy ra <=> (3 - x)(x + 4) ≥ 0

+) Th1: \(\hept{\begin{cases}3-x\ge0\\x+4\ge0\end{cases}\Rightarrow}\hept{\begin{cases}x\le3\\x\ge-4\end{cases}\Rightarrow}-4\le x\le3\)

+) Th2: \(\hept{\begin{cases}3-x\le0\\x+4\le0\end{cases}\Rightarrow}\hept{\begin{cases}x\ge3\\x\le-4\end{cases}}\)(Vô lý)

Vậy GTNN của C = -4 khi -4 ≤ x ≤ 3

b,

1, Vì |x2 - 25| ≥ 0 => 4|x2 - 25| ≥ 0 => 32 - 4|x2 - 25| ≤ 32 = 9

Dấu " = " xảy ra <=> x2 - 25 = 0 <=> x2 = 25 <=> x = 5 hoặc x = -5

Vậy GTLN B = 9 khi x = 5 hoặc x = -5

2, Đk: x ≠ 5

 \(D=\frac{x-4}{x-5}=\frac{\left(x-5\right)+1}{x-5}=1+\frac{1}{x-5}\)

Để D mang giá trị lớn nhất <=> \(\frac{1}{x-5}\)mang giá trị lớn nhất <=> x - 5 mang giá trị nhỏ nhất <=> x - 5 = 1 <=> x = 6

=> \(D=1+1=2\)

Vậy GTLN của D = 2 khi x = 6

19 tháng 10 2017

a) \(F=2\left|3x-2\right|-1\)

\(\left|3x-2\right|\ge0\forall x\Rightarrow2\left|3x-2\right|\ge0\)

\(\Rightarrow2\left|3x-2\right|-1\ge-1\)

''='' xảy ra khi \(3x-2=0\Rightarrow x=\dfrac{2}{3}\)

=> \(F_{min}=-1\)

b) \(G=x^2+3\left|y-2\right|-1\)

Ta có: \(\left\{{}\begin{matrix}x^2\ge0\forall x\\3\left|y-2\right|\ge0\forall y\end{matrix}\right.\)

=> \(x^2+3\left|y-2\right|\ge0\Rightarrow x^2+3\left|y-2\right|-1\ge-1\)

''='' xảy ra khi \(\left\{{}\begin{matrix}x^2=0\\y-2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=0\\y=2\end{matrix}\right.\)

Vậy \(G_{min}=-1\)

19 tháng 10 2017

\(A=2\left|3x-2\right|-1\ge-1\)

Dấu "=" xảy ra khi : \(x=\dfrac{2}{3}\)

\(B=x^2+3\left|y-2\right|-1\ge-1\)

Dấu "=" xảy ra khi:

\(\left\{{}\begin{matrix}x=0\\y=2\end{matrix}\right.\)