K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 11 2020

1)

\(y=x-\sqrt{x-1991}=\left(\sqrt{x-1991}-\frac{1}{2}\right)^2+\frac{7963}{4}\ge\frac{7963}{4}\)

Dấu "=" xảy ra khi \(x=\frac{7965}{4}\)

10 tháng 11 2020

2)

\(T=\frac{2a^2+4ab+5b^2}{a^2+b^2}=\frac{\left(a+2b\right)^2}{a^2+b^2}+1\ge1\)

Dấu "=" xảy ra khi a=-2b

\(T=\frac{2a^2+4ab+5b^2}{a^2+b^2}=-\frac{\left(2a-b\right)^2}{a^2+b^2}+6\le6\)

Dấu "=" xảy ra khi 2a=b

25 tháng 10 2020

Bài 4: Áp dụng bất đẳng thức AM - GM, ta có: \(P=\text{​​}\Sigma_{cyc}a\sqrt{b^3+1}=\Sigma_{cyc}a\sqrt{\left(b+1\right)\left(b^2-b+1\right)}\le\Sigma_{cyc}a.\frac{\left(b+1\right)+\left(b^2-b+1\right)}{2}=\Sigma_{cyc}\frac{ab^2+2a}{2}=\frac{1}{2}\left(ab^2+bc^2+ca^2\right)+3\)Giả sử b là số nằm giữa a và c thì \(\left(b-a\right)\left(b-c\right)\le0\Rightarrow b^2+ac\le ab+bc\)\(\Leftrightarrow ab^2+bc^2+ca^2\le a^2b+abc+bc^2\le a^2b+2abc+bc^2=b\left(a+c\right)^2=b\left(3-b\right)^2\)

Ta sẽ chứng minh: \(b\left(3-b\right)^2\le4\)(*)

Thật vậy: (*)\(\Leftrightarrow\left(b-4\right)\left(b-1\right)^2\le0\)(đúng với mọi \(b\in[0;3]\))

Từ đó suy ra \(\frac{1}{2}\left(ab^2+bc^2+ca^2\right)+3\le\frac{1}{2}.4+3=5\)

Đẳng thức xảy ra khi a = 2; b = 1; c = 0 và các hoán vị

26 tháng 10 2020

Bài 1: Đặt \(a=xc,b=yc\left(x,y>0\right)\)thì điều kiện giả thiết trở thành \(\left(x+1\right)\left(y+1\right)=4\)

Khi đó  \(P=\frac{x}{y+3}+\frac{y}{x+3}+\frac{xy}{x+y}=\frac{x^2+y^2+3\left(x+y\right)}{xy+3\left(x+y\right)+9}+\frac{xy}{x+y}\)\(=\frac{\left(x+y\right)^2+3\left(x+y\right)-2xy}{xy+3\left(x+y\right)+9}+\frac{xy}{x+y}\)

Có: \(\left(x+1\right)\left(y+1\right)=4\Rightarrow xy=3-\left(x+y\right)\)

Đặt \(t=x+y\left(0< t< 3\right)\Rightarrow xy=3-t\le\frac{\left(x+y\right)^2}{4}=\frac{t^2}{4}\Rightarrow t\ge2\)(do t > 0)

Lúc đó \(P=\frac{t^2+3t-2\left(3-t\right)}{3-t+3t+9}+\frac{3-t}{t}=\frac{t}{2}+\frac{3}{t}-\frac{3}{2}\ge2\sqrt{\frac{t}{2}.\frac{3}{t}}-\frac{3}{2}=\sqrt{6}-\frac{3}{2}\)với \(2\le t< 3\)

Vậy \(MinP=\sqrt{6}-\frac{3}{2}\)đạt được khi \(t=\sqrt{6}\)hay (x; y) là nghiệm của hệ \(\hept{\begin{cases}x+y=\sqrt{6}\\xy=3-\sqrt{6}\end{cases}}\)

Ta lại có \(P=\frac{t^2-3t+6}{2t}=\frac{\left(t-2\right)\left(t-3\right)}{2t}+1\le1\)(do \(2\le t< 3\))

Vậy \(MaxP=1\)đạt được khi t = 2 hay x = y = 1

18 tháng 10 2020

Vì xyz=1\(\Rightarrow x^2\left(y+z\right)\ge2x^2\sqrt{yz}=2x\sqrt{x}\)

Tương tự \(y^2\left(z+x\right)\ge2y\sqrt{y};z^2=\left(x+y\right)\ge2z\sqrt{z}\)

\(\Rightarrow P\ge\frac{2x\sqrt{x}}{y\sqrt{y}+2z\sqrt{z}}+\frac{2y\sqrt{y}}{z\sqrt{z}+2x\sqrt{x}}+\frac{2z\sqrt{z}}{x\sqrt{x}+2y\sqrt{y}}\)

Đặt \(x\sqrt{x}+2y\sqrt{y}=a;y\sqrt{y}+2z\sqrt{z}=b;z\sqrt{z}+2x\sqrt{x}=c\)

\(\Rightarrow x\sqrt{x}=\frac{4c+a-2b}{9};y\sqrt{y}=\frac{4a+b-2c}{9};z\sqrt{z}=\frac{4b+c-2a}{9}\)

\(\Rightarrow P\ge\frac{2}{9}\left(\frac{4c+a-2b}{b}+\frac{4a+b-2c}{a}+\frac{4b+c-2a}{b}\right)\)

\(=\frac{2}{9}\text{ }\left[4\left(\frac{c}{b}+\frac{a}{c}+\frac{b}{a}\right)+\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)-6\right]\ge\frac{2}{9}\left(4.3+2-6\right)=2\)

Min P =2 khi và chỉ khi a=b=c khi va chỉ khi x=y=z=1

AH
Akai Haruma
Giáo viên
2 tháng 1 2021

Mình nghĩ phần phân thức là $3x+3y+2z$ thay vì $3x+3y+3z$. Nếu là vậy thì bạn tham khảo lời giải tại link sau:

Cho x, y, z là các số thực dương thỏa mãn đẳng thức xy yz zx=5. Tìm GTNN của biểu thức \(P=\frac{3x 3y 2z}{\sqrt{6\left(... - Hoc24

2 tháng 1 2021

mình cảm ơn bạn nhiều ạ <3 bạn có thể giúp mình mấy câu mình vừa đăng không

 

27 tháng 10 2020

Bài 2: Ta có: x, y, z không âm và \(x+y+z=\frac{3}{2}\)nên \(0\le x\le\frac{3}{2}\Rightarrow2-x>0\)

Áp dụng bất đẳng thức AM - GM dạng \(ab\le\frac{\left(a+b\right)^2}{4}\), ta được: \(x+2xy+4xyz=x+4xy\left(z+\frac{1}{2}\right)\le x+4x.\frac{\left(y+z+\frac{1}{2}\right)^2}{4}=x+x\left(2-x\right)^2\)

Ta cần chứng minh \(x+x\left(2-x\right)^2\le2\Leftrightarrow\left(2-x\right)\left(x-1\right)^2\ge0\)*đúng*

Đẳng thức xảy ra khi \(\left(x,y,z\right)=\left(1,\frac{1}{2},0\right)\)

29 tháng 10 2020

Bài 3: Áp dụng đánh giá quen thuộc \(4ab\le\left(a+b\right)^2\), ta có: \(2\le\left(x+y\right)^3+4xy\le\left(x+y\right)^3+\left(x+y\right)^2\)

Đặt x + y = t thì ta được: \(t^3+t^2-2\ge0\Leftrightarrow\left(t-1\right)\left(t^2+2t+2\right)\ge0\Rightarrow t\ge1\)(dễ thấy \(t^2+2t+2>0\forall t\))

\(\Rightarrow x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\ge\frac{1}{2}\)

\(P=3\left(x^4+y^4+x^2y^2\right)-2\left(x^2+y^2\right)+1=3\left[\frac{3}{4}\left(x^2+y^2\right)^2+\frac{1}{4}\left(x^2-y^2\right)^2\right]-2\left(x^2+y^2\right)+1\ge\frac{9}{4}\left(x^2+y^2\right)^2-2\left(x^2+y^2\right)+1\)\(=\frac{9}{4}\left[\left(x^2+y^2\right)^2+\frac{1}{4}\right]-2\left(x^2+y^2\right)+\frac{7}{16}\ge\frac{9}{4}.2\sqrt{\left(x^2+y^2\right)^2.\frac{1}{4}}-2\left(x^2+y^2\right)+\frac{7}{16}=\frac{9}{4}\left(x^2+y^2\right)-2\left(x^2+y^2\right)+\frac{7}{16}=\frac{1}{4}\left(x^2+y^2\right)+\frac{7}{16}\ge\frac{1}{8}+\frac{7}{16}=\frac{9}{16}\)Đẳng thức xảy ra khi x = y = 1/2

30 tháng 7 2020

Xét: \(\frac{x^4}{\left(x^2+y^2\right)\left(x+y\right)}-\frac{y^4}{\left(x^2+y^2\right)\left(x+y\right)}=\frac{x^4-y^4}{\left(x^2+y^2\right)\left(x+y\right)}\)\(=\frac{\left(x^2+y^2\right)\left(x^2-y^2\right)}{\left(x^2+y^2\right)\left(x+y\right)}=\frac{\left(x^2+y^2\right)\left(x+y\right)\left(x-y\right)}{\left(x^2+y^2\right)\left(x+y\right)}=x-y\)(1)

Tương tự, ta có: \(\frac{y^4}{\left(y^2+z^2\right)\left(y+z\right)}-\frac{z^4}{\left(y^2+z^2\right)\left(y+z\right)}=y-z\)(2); \(\frac{z^4}{\left(z^2+x^2\right)\left(z+x\right)}-\frac{x^4}{\left(z^2+x^2\right)\left(z+x\right)}=z-x\)(3)

Cộng theo vế của 3 đẳng thức (1), (2), (3), ta được:

\(\left[\frac{x^4}{\left(x^2+y^2\right)\left(x+y\right)}+\frac{y^4}{\left(y^2+z^2\right)\left(y+z\right)}+\frac{z^4}{\left(z^2+x^2\right)\left(z+x\right)}\right]\)\(-\left[\frac{y^4}{\left(x^2+y^2\right)\left(x+y\right)}+\frac{z^4}{\left(y^2+z^2\right)\left(y+z\right)}+\frac{x^4}{\left(z^2+x^2\right)\left(z+x\right)}\right]=0\)

\(\Rightarrow\frac{x^4}{\left(x^2+y^2\right)\left(x+y\right)}+\frac{y^4}{\left(y^2+z^2\right)\left(y+z\right)}+\frac{z^4}{\left(z^2+x^2\right)\left(z+x\right)}\)\(=\frac{y^4}{\left(x^2+y^2\right)\left(x+y\right)}+\frac{z^4}{\left(y^2+z^2\right)\left(y+z\right)}+\frac{x^4}{\left(z^2+x^2\right)\left(z+x\right)}\)

Mà \(A=\frac{x^4}{\left(x^2+y^2\right)\left(x+y\right)}+\frac{y^4}{\left(y^2+z^2\right)\left(y+z\right)}+\frac{z^4}{\left(z^2+x^2\right)\left(z+x\right)}\)nên \(2A=\frac{x^4+y^4}{\left(x^2+y^2\right)\left(x+y\right)}+\frac{y^4+z^4}{\left(y^2+z^2\right)\left(y+z\right)}+\frac{z^4+x^4}{\left(z^2+x^2\right)\left(z+x\right)}\)\(\ge\frac{\frac{\left(y^2+z^2\right)^2}{2}}{\left(x^2+y^2\right)\left(x+y\right)}+\frac{\frac{\left(y^2+z^2\right)^2}{2}}{\left(y^2+z^2\right)\left(y+z\right)}+\frac{\frac{\left(z^2+x^2\right)^2}{2}}{\left(z^2+x^2\right)\left(z+x\right)}\)

\(=\frac{1}{2}\left(\frac{x^2+y^2}{x+y}+\frac{y^2+z^2}{y+z}+\frac{z^2+x^2}{z+x}\right)\)\(\ge\frac{1}{2}\left(\frac{\frac{\left(x+y\right)^2}{2}}{x+y}+\frac{\frac{\left(y+z\right)^2}{2}}{y+z}+\frac{\frac{\left(z+x\right)^2}{2}}{z+x}\right)\)\(=\frac{1}{4}\left[\left(x+y\right)+\left(y+z\right)+\left(z+x\right)\right]=\frac{1}{2}\left(x+y+z\right)=\frac{1}{2}\)(Do theo giả thiết thì x + y + z = 1)

\(\Rightarrow A\ge\frac{1}{4}\)

Đẳng thức xảy ra khi \(x=y=z=\frac{1}{3}\)

12 tháng 8 2017

Bài này t làm rồi, "nhẹ" không ấy mà :|

Dự đoán khi \(x=y=z=\frac{1}{3}\Rightarrow A=\frac{1}{4}\). Ta c/m nó là GTNN của A

Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:

\(A=Σ\frac{x^4}{\left(x^2+y^2\right)\left(x+y\right)}\ge\frac{\left(x^2+y^2+z^2\right)^2}{Σ\left(x^2+y^2\right)\left(x+y\right)}\)

Cần chứng minh BĐT \(\frac{\left(x^2+y^2+z^2\right)^2}{Σ\left(x^2+y^2\right)\left(x+y\right)}\ge\frac{x+y+z}{4}\)

\(\Leftrightarrow4\left(x^2+y^2+z^2\right)^2\ge\left(x+y+z\right)Σ\left(2x^3+x^2y+x^2z\right)\)

\(\LeftrightarrowΣ\left(2x^4-3x^3y-3x^3z+6x^2y^2-2x^2yz\right)\ge0\)

\(\LeftrightarrowΣ\left(2x^4-3x^3y-3x^3z+4x^2y^2\right)+Σ\left(2x^2y^2-2x^2yz\right)\ge0\)

\(\LeftrightarrowΣ\left(x^4-3x^3y+4x^2y^2-3xy^3+y^4\right)+Σ\left(x^2z^2-2z^2xy+y^2z^2\right)\ge0\)

\(\LeftrightarrowΣ\left(x-y\right)^2\left(x^2-xy+y^2\right)+Σz^2\left(x-y\right)^2\ge0\)

BĐT cuối đúng tức ta có \(A_{Min}=\frac{1}{4}\Leftrightarrow x=y=z=\frac{1}{3}\)

P/s: Nguồn lời giải Câu hỏi của Vo Trong Duy - Toán lớp 9 - Học toán với OnlineMath, rảnh quá ngồi gõ lại :V

10 tháng 8 2017

post từng câu một thôi bn nhìn mệt quá