Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) \(33^{2x}:11^{2x}=81\)\(\Leftrightarrow\left(33:11\right)^{2x}=81\)
\(\Leftrightarrow3^{2x}=3^4\)\(\Leftrightarrow2x=4\)\(\Leftrightarrow x=2\)
Vậy \(x=2\)
b) \(\frac{x}{-5}=\frac{4}{21}\)\(\Leftrightarrow21x=-20\)\(\Leftrightarrow x=\frac{-20}{21}\)
Vậy \(x=\frac{-20}{21}\)
Bài 2:
\(A=\frac{1+3^4+3^8+3^{12}}{1+3^2+3^4+3^6+3^8+3^{10}+3^{12}+3^{14}}\)
\(=\frac{1+3^4+3^8+3^{12}}{\left(1+3^4+3^8+3^{12}\right)+\left(3^2+3^6+3^{10}+3^{14}\right)}\)
\(=\frac{1+3^4+3^8+3^{12}}{\left(1+3^4+3^8+3^{12}\right)+3^2.\left(1+3^4+3^8+3^{12}\right)}\)
\(=\frac{1+3^4+3^8+3^{12}}{\left(1+3^4+3^8+3^{12}\right).\left(1+3^2\right)}=\frac{1}{1+3^2}=\frac{1}{1+9}=\frac{1}{10}\)
\(33^{2x}:11^{2x}=81\)!
\(\left(33:11\right)^{2x}=81\)
\(3^{2x}=81\)
\(3^{2x}=3^4\)
\(2x=4\)
\(x=4:2\)
\(x=2\)
vậy \(x=2\)
\(\frac{x}{-5}=\frac{4}{21}\)
x.21=-5.4
x.21=-20
x=-20:21
\(x=-\frac{20}{21}\)
vậy \(x=-\frac{20}{21}\)
Bài 1:
\(a,A=3,2.\frac{15}{24}-\left(80\%+\frac{2}{3}\right):3\frac{2}{3}\) \(b,B=\frac{\frac{1}{2}+\frac{3}{4}-\frac{5}{6}}{\frac{1}{4}+\frac{3}{8}-\frac{5}{12}}+\frac{\frac{3}{4}+\frac{3}{5}-\frac{3}{8}}{\frac{1}{4}+\frac{1}{5}-\frac{1}{8}}\)
\(=\frac{16}{5}.\frac{5}{8}-\left(\frac{4}{5}+\frac{2}{3}\right):\frac{11}{3}\) \(=\frac{\frac{6+9-10}{12}}{\frac{12+18-10}{48}}+\frac{\frac{30+24-15}{40}}{\frac{10+8-5}{40}}\)
\(=2-\frac{22}{15}.\frac{3}{11}\) \(=\frac{\frac{5}{12}}{\frac{20}{48}}+\frac{\frac{39}{40}}{\frac{13}{40}}\)
\(=2-\frac{2}{5}\) \(=\frac{5}{12}:\frac{5}{6}+\frac{39}{40}:\frac{13}{40}\)
\(=\frac{8}{5}\) \(=\frac{5}{12}.\frac{6}{5}+\frac{39}{40}.\frac{40}{13}\)
\(=\frac{1}{2}+3=3\frac{1}{2}\)
Hok tốt
Như thế này:
Từ A=.....=\(\frac{8}{5}\)
Còn từ B=....=\(3\frac{1}{2}\)
1/a) Ta có: \(A=x^4+\left(y-2\right)^2-8\ge-8\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x=0\\y-2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=0\\y=2\end{cases}}\)
Vậy GTNN của A = -8 khi x=0, y=2.
b) Ta có: \(B=|x-3|+|x-7|\)
\(=|x-3|+|7-x|\ge|x-3+7-x|=4\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x\ge3\\x\le7\end{cases}}\Rightarrow3\le x\le7\)
Vậy GTNN của B = 4 khi \(3\le x\le7\)
2/ a) Ta có: \(xy+3x-7y=21\Rightarrow xy+3x-7y-21=0\)
\(\Rightarrow x\left(y+3\right)-7\left(y+3\right)=0\Rightarrow\left(x-7\right)\left(y+3\right)=0\)
\(\Rightarrow\hept{\begin{cases}x=7\\y=-3\end{cases}}\)
b) Ta có: \(\frac{x+3}{y+5}=\frac{3}{5}\)và \(x+y=16\)
Áp dụng tính chất bằng nhau của dãy tỉ số, ta có:
\(\frac{x+3}{y+5}=\frac{3}{5}\Rightarrow\frac{x+3}{3}=\frac{y+5}{5}=\frac{x+y+8}{8}=\frac{16+8}{8}=\frac{24}{8}=3\)
\(\Rightarrow\hept{\begin{cases}\frac{x+3}{3}=3\Rightarrow x+3=9\Rightarrow x=6\\\frac{y+5}{5}=3\Rightarrow y+5=15\Rightarrow y=10\end{cases}}\)
Bài 3: đề không rõ.
Bài 1:\(a,A=x^4+\left(y-2\right)^2-8\)
Có \(x^4\ge0;\left(y-2\right)^2\ge0\)
\(\Rightarrow A\ge0+0-8=-8\)
Dấu "=" xảy ra khi \(MinA=-8\Leftrightarrow x=0;y=2\)
\(b,B=\left|x-3\right|+\left|x-7\right|\)
\(\Rightarrow B=\left|x-3\right|+\left|7-x\right|\)
\(\Rightarrow B\ge\left|x-3+7-x\right|\)
\(\Rightarrow B\ge\left|-10\right|=10\)
Dấu "=" xảy ra khi \(MinB=10\Leftrightarrow3\le x\le7\Rightarrow x\in\left(3;4;5;6;7\right)\)
\(A=\frac{2^{12}.3^5-4^6.9^2}{\left(2^2.3\right)^6}-\frac{5^{10}.7^4-25^5.49^2}{\left(125.7\right)3+5^9.\left(14\right)^3}\)
\(=\frac{2^{12}.3^5-\left(2^2\right)^6.\left(3^2\right)^2}{\left(2^2\right)^6.3^6+\left(2^3\right)^4.3^5}-\frac{5^{10}.7^3-\left(5^2\right)^5.\left(7^2\right)^2}{125^3.7^3+5^9.\left(2.7\right)^3}\)
\(=\frac{2^{12}.3^5-2^{12}.3^4}{2^{12}.3^6+2^{12}.3^5}-\frac{5^{10}.7^3-5^{10}.7^4}{5^9.7^3+5^9.7^3.2^3}\)
\(=\frac{2^{12}.3^4\left(3-1\right)}{2^{12}.3^5\left(3+1\right)}-\frac{5^{10}.7^3\left(1-7\right)}{5^9.7^3\left(1+8\right)}\)
\(=\frac{2}{3.4}-\frac{5.\left(-6\right)}{9}=\frac{2}{12}-\frac{-30}{9}\)
\(=\frac{1}{6}+\frac{10}{3}=\frac{1}{6}+\frac{20}{6}=\frac{21}{6}=\frac{7}{2}\)
Bạn ơi cho mk hỏi chỗ đoạn kia bạn lấy 1-7 ở đâu và 1 + 8 ở đâu
\(\left|x-3\right|=2x+4\)
\(\left|x-3\right|=2x+2\cdot2\)
\(\left|x-3\right|=2\left(x+2\right)\)
\(\Rightarrow\orbr{\begin{cases}x-3=-\left[2\cdot\left(x+2\right)\right]\\x-3=2\left(x+2\right)\end{cases}}\) \(\Rightarrow\orbr{\begin{cases}x-3=-\left[2x+4\right]\\x-3=2x+2\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x-3=-2x-4\\x=2x+2+3\end{cases}}\) \(\Rightarrow\orbr{\begin{cases}x=-2x-4+3\\x=2x+5\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-2x-1\\x=2x+5\end{cases}}\) \(.....................\)
a) \(\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x+1\right)}=\frac{4}{5}\)
\(\Leftrightarrow2\times\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{4}{5}\)
\(\Leftrightarrow2\times\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{4}{5}\)
\(\Leftrightarrow2\times\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{4}{5}\)
\(\Leftrightarrow2\times\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{4}{5}\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{4}{5}:2\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2}{5}\)
\(\Leftrightarrow\frac{1}{x+1}=\frac{2}{5}-\frac{1}{2}\)
\(\Leftrightarrow\frac{1}{x+1}=\frac{4}{10}-\frac{5}{10}=\frac{-1}{10}\)
\(\Leftrightarrow\frac{1}{x+1}=\frac{4}{10}-\frac{5}{10}=\frac{1}{-10}\)
\(\Leftrightarrow x+1=-10\)
\(\Leftrightarrow x=-10-1\)
\(\Leftrightarrow x=-11\)
Hông chắc !!! <3
b) Đề khó hiểu vậy, nếu đề là : \(x+\frac{1}{3}+\frac{1}{3}+\frac{1}{3}=1\)thì làm như sau nha
\(x+\frac{1}{3}+\frac{1}{3}+\frac{1}{3}=1\)
\(\Leftrightarrow x+\left(\frac{1}{3}+\frac{1}{3}+\frac{1}{3}\right)=1\)
\(\Leftrightarrow x+1=1\)
\(\Leftrightarrow x=1-1\)
\(\Leftrightarrow x=0\)
Rất vui vì giúp đc bạn <3
Cô mk giao thế, bó tay.com. Ko bỏ trị tuyệt đối đi vô lý như thế chứ