Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. \(\frac{1}{1-x}+\frac{1}{1+x}+\frac{2}{x^2-1}\)
= \(-\frac{x+1}{\left(x-1\right)\left(x+1\right)}+\frac{x-1}{\left(x-1\right)\left(x+1\right)}+\frac{2}{\left(x-1\right)\left(x+1\right)}\)
= \(\frac{-x-1+x-1+2}{\left(x-1\right)\left(x+1\right)}=0\)
c) \(\left(\frac{x^2-16}{x^2+8x+16}+\frac{6}{x+4}\right)\cdot\frac{2x}{x+2}\)
= \(\left(\frac{x^2-16}{\left(x+4\right)^2}+\frac{6\left(x+4\right)}{\left(x+4\right)^2}\right)\cdot\frac{2x}{x+2}\)
= \(\left(\frac{x^2-16+6x+24}{\left(x+4\right)^2}\right)\cdot\frac{2x}{x+2}\)
= \(\frac{x^2+6x+8}{\left(x+4\right)^2}\cdot\frac{2x}{x-2}\)
= \(\frac{x^2+4x+2x+8}{\left(x+4\right)^2}\cdot\frac{2x}{x+2}\)
= \(\frac{\left(x+4\right)\left(x+2\right)}{\left(x+4\right)^2}\cdot\frac{2x}{x+2}=\frac{2x}{x+4}\)