Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a: \(x^2+5x=x\left(x+5\right)\)
Để biểu thức này âm thì \(x\left(x+5\right)< 0\)
hay -5<x<0
b: \(3\left(2x+3\right)\left(3x-5\right)< 0\)
\(\Leftrightarrow-\dfrac{3}{2}< x< \dfrac{5}{3}\)
a) Ta có: A = x^2+4x
=>A= x(×+4)
Để A có gtri dương=>x và ( x+4) cùng dấu
Xét x và x+4 có gtri dương
=>x lớn hơn 0 (1)
Xét x và x+4 có gtri âm
=>x bé hơn -4. (2)
Từ (1) và (2) ta suy ra
Để A có gtri dương thì x phải lớn hơn 0 và bé hơn -4
b)
Ta có: B = (x-3)(x+7)
=> B = (x+(-3)) (x+7)
=> B = x^2+(-3)x+7x+(-21)
=> B =x(x+5)+(-21)
Để B có gtri dương => x(x+5)>21
Xét x = 1 => B=1(1+5)=6< 21( ko t/mãn)
Tương tự vs 2 ta cũng thấy ko thỏa mãn
Xét x =3=>B=3(3+5)=24>21( t/mãn)
Vậy để B có gtri dương thì x> 3
Còn câu c) thì tịttttttttttt..........(°¤°)
C=(1/2-x).(1/3-x) (1)
x | \(-\infty\) 1/3 1/2 \(+\infty\) |
1/2-x | - - 0 + |
1/3-x | - 0 + + |
(1/2-x).(1/3-x) | + 0 - 0 + |
(1) <=> x<1/3 hoac x>1/2
Vay voi x<1/3 va x>1/2 thi bieu thuc da cho co gia tri duong
\(A=x^2+4x< 0\)
\(=>x^2< -4x\)
\(=>x< -4\)
\(\left(x-3\right)\left(x+7\right)< 0\)
\(=>x-3< 0< x+7\)hoặc \(x+7< 0< x-3\)
\(=>-7< x< 3\)
\(x^2+4x< 0\)
\(\Rightarrow x\left(x+4\right)< 0\)
Th1 : \(\hept{\begin{cases}x>0\\x+4< 0\end{cases}\Rightarrow\hept{\begin{cases}x>0\\x< -4\end{cases}}}\)
Th2 : \(\hept{\begin{cases}x< 0\\x+4>0\end{cases}\Rightarrow\hept{\begin{cases}x< 0\\x>-4\end{cases}}}\)
Những câu còn lại tương tự thôi
a/ Ta có \(A=x^2+4x=x\left(x+4\right)\)
Để A > 0
=> \(x\left(x+4\right)>0\)
=> \(\hept{\begin{cases}x>0\\x+4>0\end{cases}}\)hoặc \(\hept{\begin{cases}x< 0\\x+4< 0\end{cases}}\)
=> \(\hept{\begin{cases}x>0\\x>-4\end{cases}}\)hoặc \(\hept{\begin{cases}x< 0\\x< -4\end{cases}}\)
=> \(\orbr{\begin{cases}x>0\\x< -4\end{cases}}\)
Vậy khi \(\orbr{\begin{cases}x>0\\x< -4\end{cases}}\)thì A > 0.
b/ Ta có \(B=\left(x-3\right)\left(x+7\right)\)
\(B=x^2+7x-3x-21\)
\(B=x^2+4x-21\)
\(B=x^2+4x+4-25\)
\(B=\left(x+2\right)^2-25\)
Để B > 0
=> \(\left(x+2\right)^2-25>0\)
<=> \(\left(x+2\right)^2>25\)
<=> \(\orbr{\begin{cases}x+2>5\\x+2>-5\end{cases}}\)
<=> \(\orbr{\begin{cases}x>3\\x>-7\end{cases}}\)
Vậy khi \(\orbr{\begin{cases}x>3\\x>-7\end{cases}}\)thì B > 0.
c/ Ta có \(C=\left(\frac{1}{2}-x\right)\left(\frac{1}{3}-x\right)=\frac{1}{6}-\frac{1}{2}x-\frac{1}{3}x+x^2=\frac{1}{6}-\frac{5}{6}x^2+x^2=\frac{1}{6}-\frac{1}{6}x^2=\frac{1}{6}\left(1-x^2\right)\)
Để C > 0
<=> \(\frac{1}{6}\left(1-x^2\right)>0\)
<=> \(1-x^2>0\)
<=> \(x^2>1\)
<=> \(x>\pm1\)
Vậy khi \(\orbr{\begin{cases}x>1\\x>-1\end{cases}}\)thì C > 0.
Bài 2:
a) \(A=x^2+6\ge6>0\forall x\in R\)
b) \(B=\left(5-x\right)\left(x+8\right)>0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}5-x>0\\x+8>0\end{matrix}\right.\\\left\{{}\begin{matrix}5-x< 0\\x+8< 0\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}5>x\ge-8\left(nhận\right)\\-8>x>5\left(VLý\right)\end{matrix}\right.\)
1) Xét rằng x > 7 <=> A < 0
Lại xét x < 7 thì mẫu là một số nguyên dương. P/s A có tử và mẫu đều là số dương, mà tử lại bất biến
A(max) <=> mẫu 7 - x nhỏ nhất <=> 7 - x = 1 => x = 7 - 1 = 6 <=> A = 1
Từ những điều trên thì A sẽ có GTLN khi và chỉ khi x = 6
\(a,\Rightarrow2x-3\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\\ \Rightarrow x\in\left\{-2;1;2;5\right\}\\ b,=\dfrac{2\left(x-1\right)+1}{x-1}=2+\dfrac{1}{x-1}\in Z\\ \Rightarrow x-1\inƯ\left(1\right)=\left\{-1;1\right\}\\ \Rightarrow x\in\left\{0;2\right\}\\ c,\Rightarrow x^2-3\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\\ \Rightarrow x^2\in\left\{2;4;8\right\}\\ \Rightarrow x^2=4\left(x\in Z\right)\\ \Rightarrow x=\pm2\)