\(\dfrac{a}{3}=\dfrac{b}{2};\dfrac{b}{7}=\dfrac{c}{5}\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2017

a/ \(\dfrac{a}{3}=\dfrac{b}{2}\Rightarrow\dfrac{a}{21}=\dfrac{b}{14};\dfrac{b}{7}=\dfrac{c}{5}\Rightarrow\dfrac{b}{14}=\dfrac{c}{10}\)

\(\Rightarrow\dfrac{a}{21}=\dfrac{b}{14}=\dfrac{c}{10}\Rightarrow\dfrac{3a}{63}=\dfrac{7b}{98}=\dfrac{5c}{50}\)

Áp dụng t/c của dãy tỉ số = nhau có:

\(\dfrac{3a}{63}=\dfrac{7b}{98}=\dfrac{5c}{50}=\dfrac{3a-7b+5c}{63-98+50}=\dfrac{30}{15}=2\)

\(\Rightarrow\left\{{}\begin{matrix}a=\dfrac{2\cdot63}{3}=42\\b=\dfrac{2\cdot98}{7}=28\\c=\dfrac{2\cdot50}{5}=20\end{matrix}\right.\)

Vậy....................

b/ 7a = 9b = 21c => \(\dfrac{a}{\dfrac{1}{7}}=\dfrac{b}{\dfrac{1}{9}}=\dfrac{c}{\dfrac{1}{21}}\)

và a - b + c = -15

Áp dụng tccdts = nhau ta có:

\(\dfrac{a}{\dfrac{1}{7}}=\dfrac{b}{\dfrac{1}{9}}=\dfrac{c}{\dfrac{1}{21}}=\dfrac{a-b+c}{\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{21}}=\dfrac{-15}{\dfrac{5}{63}}=-189\)

=> \(\left\{{}\begin{matrix}a=-189\cdot\dfrac{1}{7}=-27\\b=-189\cdot\dfrac{1}{9}=-21\\c=-189\cdot\dfrac{1}{21}=-9\end{matrix}\right.\)

Vậy............

30 tháng 7 2017

Dựa theo t/c dãy tỉ số bằng nhau mà làm :VV

26 tháng 10 2018

Câu a, b, c giống dạng nhau nên mình làm một câu a và câu d thôi nha, bạn tham khảo ^^

Giải:

a) \(a=\dfrac{b}{2}=\dfrac{c}{3}\)

Áp dụng tính chất của dãy tỉ sô bằng nhau:

\(a=\dfrac{b}{2}=\dfrac{c}{3}=\dfrac{a-b+c}{1-2+3}=\dfrac{10}{2}=5\)

\(\Rightarrow\left\{{}\begin{matrix}a=5.1=5\\b=2.5=10\\c=3.5=15\end{matrix}\right.\)

b) \(a:b:c=3:4:5\)

\(\Rightarrow\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}\)

\(\Rightarrow\dfrac{a^2}{9}=\dfrac{b^2}{16}=\dfrac{c^2}{25}\)

\(\Rightarrow\dfrac{2a^2}{18}=\dfrac{2b^2}{32}=\dfrac{3c^2}{75}\)

Áp dụng tính chất của dãy tỉ sô bằng nhau:

\(\Rightarrow\dfrac{2a^2}{18}=\dfrac{2b^2}{32}=\dfrac{3c^2}{75}=\dfrac{2a^2+2b^2-3c^2}{18+32-75}=\dfrac{-100}{-25}=4\)

\(\Leftrightarrow\left\{{}\begin{matrix}a^2=\dfrac{4.18}{2}=36\\b^2=\dfrac{4.32}{2}=64\\c^2=\dfrac{4.75}{3}=100\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=\pm6\\b=\pm8\\c=\pm10\end{matrix}\right.\)

26 tháng 7 2021

a, Ta có: \(\frac{a}{3}=\frac{b}{2};\frac{b}{7}=\frac{c}{5}\Rightarrow\frac{a}{21}=\frac{b}{14}=\frac{c}{10}\)

Áp dụng tính chất dãy tỉ số bằng nhau 

\(\frac{a}{21}=\frac{b}{14}=\frac{c}{15}=\frac{3a-7b+5c}{63-98+75}=\frac{30}{40}=\frac{3}{4}\)

\(a=\frac{63}{4};b=\frac{42}{4};c=\frac{45}{4}\)

26 tháng 7 2021

b, Ta có : \(7a=9b=21c\Rightarrow\frac{7a}{63}=\frac{9b}{63}=\frac{21c}{63}\Rightarrow\frac{a}{9}=\frac{b}{7}=\frac{c}{3}\)

Áp dụng tính chất dãy tỉ số bằng nhau 

\(\frac{a}{9}=\frac{b}{7}=\frac{c}{3}=\frac{a-b+c}{9-7+3}=-\frac{15}{5}=-3\Rightarrow a=-27;b=-21;c=-9\)

9 tháng 8 2017

Không có điều kiện gì à ( Kiểu \(\dfrac{a}{b}=\dfrac{c}{d}\) ấy )

29 tháng 10 2017

1.

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(7a=9b=21c=\dfrac{a}{\dfrac{1}{7}}=\dfrac{b}{\dfrac{1}{9}}=\dfrac{c}{\dfrac{1}{21}}=\dfrac{a-b+c}{\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{21}}=\dfrac{15}{\dfrac{5}{63}}=15\cdot\dfrac{63}{5}=189\\ \Rightarrow\left\{{}\begin{matrix}7a=189\\9b=189\\21c=189\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a=189:7\\b=189:9\\c=189:21\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a=27\\b=21\\c=9\end{matrix}\right.\)

2.

\(b^2=ac\Rightarrow\dfrac{b}{c}=\dfrac{a}{b}\)

\(\dfrac{b}{c}=\dfrac{a}{b}=k\Rightarrow b=ck;a=bk\)

\(\dfrac{a^2+b^2}{b^2+c^2}=\dfrac{b^2k^2+c^2k^2}{b^2+c^2}=\dfrac{k^2\left(b^2+c^2\right)}{b^2+c^2}=k^2\\ \dfrac{a}{c}=\dfrac{bk}{c}=\dfrac{ck\cdot k}{c}=k^2\\ \Rightarrow\dfrac{a^2+b^2}{b^2+c^2}=\dfrac{a}{c}\)

29 tháng 10 2017

Câu 2:

Ta có:

\(\dfrac{a^2+b^2}{b^2+c^2}=\dfrac{a^2+ac}{ac+c^2}=\dfrac{a\left(a+c\right)}{c\left(a+c\right)}=\dfrac{a}{c}\)

\(\RightarrowĐPCM\)

3 tháng 4 2017

Câu 1

\(\left\{{}\begin{matrix}7A,7B\in N\\7B=7A+5\\\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}7B>7A\\\dfrac{7A}{7B}=\dfrac{8}{9}\end{matrix}\right.\)\(\dfrac{7A}{7B}=\dfrac{8}{9}\Rightarrow\dfrac{7A}{8}=\dfrac{7B}{9}=\dfrac{7B-7A}{9-8}=7B-7A=5\)

\(\Rightarrow\left\{{}\begin{matrix}7A=8.5=40\left(emhs\right)\\7B=9.5=45\left(emhs\right)\end{matrix}\right.\)

3 tháng 4 2017

Câu2

Phần a

Tạm hiểu A=a {chuẩn A\(\ne a\)} vớ đề này hiểu giống nhau

\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{\left(a-b\right)}{c-d}=\dfrac{\left(a+b\right)}{c+d}\)

\(\dfrac{a}{c}=\dfrac{b}{d}\Rightarrow\dfrac{a^2}{c^2}=\dfrac{b^2}{d^2}=\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{a^2-b^2}{c^2-d^2}=\dfrac{\left(a-b\right)\left(a+b\right)}{\left(c-d\right)\left(c+d\right)}=\dfrac{a}{c}\dfrac{b}{d}=\dfrac{ab}{cd}\)

phầnb

\(\dfrac{a+b}{c}=\dfrac{b+c}{a}=\dfrac{c+a}{b}=\dfrac{2\left(a+b+c\right)}{a+b+c}=2\)

\(M=\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)\left(1+\dfrac{c}{a}\right)=\left(\dfrac{a+b}{b}\right)\left(\dfrac{b+c}{c}\right)\left(\dfrac{a+c}{a}\right)\)\(M=\left(\dfrac{a+b}{c}\right)\left(\dfrac{b+c}{a}\right)\left(\dfrac{a+c}{b}\right)=2.2.2=8\)

23 tháng 7 2017

\(\dfrac{a}{b}=\dfrac{7a}{7b}\\ \dfrac{c}{d}=\dfrac{5c}{5d}\Rightarrow\dfrac{a}{b}=\dfrac{7a}{7b}=\dfrac{5c}{5d}\Rightarrow\dfrac{7a}{7b}=\dfrac{5c}{5d}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{7a}{7b}=\dfrac{5c}{5d}=\dfrac{7a+5c}{7b+5d}\)

\(\dfrac{7a}{7b}=\dfrac{a}{b}\Rightarrow\dfrac{a}{b}=\dfrac{5c}{5d}=\dfrac{7a+5c}{7b+5d}\Leftrightarrow\dfrac{a}{b}=\dfrac{7a+5c}{7b+5d}\)

Vậy \(\dfrac{a}{b}=\dfrac{7a+5c}{7b+5d}\left(đpcm\right)\)

23 tháng 7 2017

\(\dfrac{a}{b}=\dfrac{c}{d}\)

\(\Rightarrow ad=bc\)

\(\Rightarrow5ad=5bc\)

\(\Rightarrow7ab+5ad=7ab+5bc\)

\(\Rightarrow a\left(7b+5d\right)=b\left(7a+5c\right)\)

\(\Rightarrow\dfrac{a}{b}=\dfrac{7a+5c}{7b+5d}\rightarrowđpcm\)

31 tháng 8 2017

Bài 1:

a) Có: 4a = 3b => \(\dfrac{a}{3}=\dfrac{b}{4}\) => \(\dfrac{a}{15}=\dfrac{b}{20}\)

7b = 5c => \(\dfrac{b}{5}=\dfrac{c}{7}\) => \(\dfrac{b}{20}=\dfrac{c}{28}\)

=> \(\dfrac{a}{15}=\dfrac{b}{20}=\dfrac{c}{28}\)

Áp dụng t/c dãy tỉ số bằng nhau, ta có:

\(\dfrac{a}{15}=\dfrac{b}{20}=\dfrac{c}{28}=\dfrac{2a+3b-c}{30+60-28}=\dfrac{186}{62}=3\)

=> \(\left\{{}\begin{matrix}a=45\\b=60\\c=84\end{matrix}\right.\)

b) Tương tự câu a

c) Đặt \(\dfrac{a-1}{2}=\dfrac{b-2}{3}=\dfrac{c-3}{4}=k\)

=> \(\left\{{}\begin{matrix}a=2k+1\\b=3k+2\\c=4k+3\end{matrix}\right.\)

Mà a - 2b + 3c = 14 => 2k + 1 - 6k - 4 + 12k + 9 = 8k + 6 = 14 => k = 1

=> \(\left\{{}\begin{matrix}a=3\\b=5\\c=7\end{matrix}\right.\)

d) Từ a:b:c = 3:4:5 => \(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}\)

Đặt \(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}=k\)

=> \(\left\{{}\begin{matrix}a=3k\\b=4k\\c=5k\end{matrix}\right.\)

Mà 2a2 + 2b2 - 3c2 = -100 => 18k2 + 32k2 - 75k2 = -100 => k2 = 4 => k = \(\pm\)2

Với k = 2 => \(\left\{{}\begin{matrix}a=6\\b=8\\c=10\end{matrix}\right.\)

Với k = -2 => \(\left\{{}\begin{matrix}a=-6\\b=-8\\c=-10\end{matrix}\right.\)

Bài 2:

Nửa chu vi hình chữ nhật là: 90:2 = 45 (m)

Tỉ số giữa chiều dài và chiều rộng = \(\dfrac{2}{3}\)=> chiều rộng = \(\dfrac{2}{5}\) nửa chu vi

=> chiều rộng = 18(m) => chiều dài = 27(m)

31 tháng 8 2017

thánh nhân xuất hiện đê