Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi chữ số hàng chục là a ( a thuộc tập hợp N*)
thì chữ số hàng đơn vị là 3a
ta được số ban đầu là 10a + 3a = 13a
số sau khi đổi chỗ là 10.3a + a = 31a
vì sau khi đỗi chỗ các chữ số thì số mới hơn số ban đầu 18 đơn vị nên ta có phương trình
13a + 18 = 31a
<=> 13a - 31a = -18
<=> -18a = -18
<=> a = 1 (thỏa mãn điều kiện )
=> 3a = 3
vạy ta được số 13
Gọi số cần tìm là \(\overline{ab},2\le a\le9,0\le b\le9,a,b\inℕ\)
Theo đề: \(\hept{\begin{cases}a=b+2\\\overline{ab}=a^2+b^2+1\Leftrightarrow10a+b=a^2+b^2+1\end{cases}}\)Thay vế trên xuống vế dưới:
\(\Rightarrow10\left(b+2\right)+b=\left(b+2\right)^2+b^2+1\Leftrightarrow b=5\)(vì \(b\inℕ\)) \(\Rightarrow a=b+2=7\)
Vậy số cần tìm là 75
Bài 1:
Tổng số phần bằng nhau: 8+1=9(phần)
Số bé là: 72:9 x 1 = 8
Số lớn là: 8 x 8 = 64
Đ.số:2 số đó là 8 và 64
Gọi chữ số đơn vị là x (0 < x < 7)
Chữ số hàng chục là x + 2
Ví số cần tìm lớn hơn tổng các bình phương chữ số của nó là 1 đơn vị nên ta có phương trình :
10(x + 2) + x = (x + 2)2 + x2 + 1
Giải phương trình trên ta được x = 5 => x + 2 = 7
Số cần tìm là 75
Số tự nhiên 2 chữ số \(\overline{xy}=10x+y\)
Hai lần chữ số hàng chục hơn chữ số hàng đơn vị : \(2x-y=1\left(1\right)\)
Khi viết ngược lại :
\(10y+x-\left(10x+y\right)=27\)
\(\Rightarrow10y+x-10x-y=27\)
\(\Rightarrow-9x+9y=27\left(2\right)\)
\(\left(1\right),\left(2\right)\) ta có hệ phương trình
\(\left\{{}\begin{matrix}2x-y=1\\-9x+9y=27\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}18x-9y=9\\-18x+18y=54\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}9y=63\\2x-y=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=7\\x=\dfrac{y+1}{2}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=7\end{matrix}\right.\)
Vậy số tự nhiên đó là 47
Gọi số tự nhiên đó là ab(ab>14). Theo đề bài ta có:
Chữ số hàng đơn vị lớn hơn chữ số hàng chục là 4 đơn vị nên ta có phương trình: \(-a+b=4\left(1\right)\)
Nếu đổi chỗ 2 chữ số cho nhau thì được số mới bằng \(\dfrac{17}{5}\) số cũ nên ta có phương trình: \(ba-ab=\dfrac{17}{5}\Leftrightarrow10b+a-10a-b=\dfrac{17}{5}\Leftrightarrow9b-9a=\dfrac{17}{5}\Leftrightarrow-45a+45b=17\left(2\right)\)
Từ (1) và (2) ta có hệ phương trình:
\(\left\{{}\begin{matrix}-a+b=4\\-45a+45b=17\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-45a+45b=180\left(3\right)\\-45a+45b=17\left(2\right)\end{matrix}\right.\) Trừ từng vế của (3) cho (2) ta được:
\(\Rightarrow0a+0b=180-17=163\) Vô lí \(\Rightarrow\) Ko có a,b
Vậy ko tồn tại số tự nhiên thỏa mãn đề bài
Bài1:
Gọi hai số đó lần lượt là a và b
ta có
a + b = 17 (1)
a² + b² = 157 (2)
từ (1) ==> a = 17 - b
Thế vao (2)
(17 - b)² + b² = 157
289 - 34b + b² + b² = 157
2b² - 34b + 132 = 0
b² - 17b + 66 = 0
(b - 6)(b - 11) = 0
b = 6 hoặc b = 11
Bài 2:
Tham khảo in my link:https://olm.vn/hoi-dap/detail/98094568627.html
~Hok tốt~