K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2020

2, a,đkxđ \(x\ne-3;x\ne2\)

mình giải luôn nhé k ghi lại đề nữa

\(=\frac{x+2}{x+3}-\frac{5}{\left(x+3\right)\left(x-2\right)}-\frac{1}{x-2}\)

\(=\frac{\left(x+2\right)\left(x-2\right)-5-1\left(x+3\right)}{\left(x+3\right)\left(x-2\right)}\)

\(=\frac{x^2-4-5-x-3}{\left(x+3\right)\left(x-2\right)}\)

\(=\frac{x^2-x-12}{\left(x+3\right)\left(x-2\right)}\)

\(=\frac{x^2+3x-4x-12}{\left(x+3\right)\left(x-2\right)}\)

\(=\frac{\left(x+3\right)\left(x-4\right)}{\left(x+3\right)\left(x-2\right)}\)

\(=\frac{x-4}{x-2}\)

b,\(M=\frac{x-4}{x-2}=\frac{x-2-2}{x-2}=1-\frac{2}{x-2}\)

để M nguyên thì \(\frac{2}{x-2}\) nguyên=>x - 2 là ước của 2,\(Ư_{\left(2\right)}=\left\{-2;-1;1;2\right\}\)

x - 2 = -2 <=> x = 0

x - 2 = -1 <=> x = 1

x - 2 = 1 <=> x = 3

x - 2 =2 <=> x = 4

vậy x = {0;1;3;4}

2 tháng 8 2020

a) \(\frac{\left(x+1\right)^2-\left(x-1\right)^2}{x^2-1}:\frac{x-1+x^2+x+2}{x^2-1}\)

=\(\frac{2x+2}{\left(x+1\right)^2}=\frac{2\left(x+1\right)}{\left(x+1\right)^2}=2\)

1 tháng 2 2020

Bài 4:

a) \(\frac{2x^2-10xy}{2xy}+\frac{5y-x}{y}\)

\(=\frac{y.\left(2x^2-10xy\right)}{2xy.y}+\frac{2xy.\left(5y-x\right)}{2xy.y}\)

\(=\frac{2x^2y-10xy^2}{2xy^2}+\frac{10xy^2-2x^2y}{2xy^2}\)

\(=\frac{2x^2y-10xy^2+10xy^2-2x^2y}{2xy^2}\)

\(=\frac{0}{2xy^2}\)

\(=0.\)

b) \(\frac{2}{x+y}+\frac{1}{x-y}+\frac{3x}{x^2-y^2}\)

\(=\frac{2}{x+y}+\frac{1}{x-y}+\frac{3x}{\left(x-y\right).\left(x+y\right)}\)

\(=\frac{2.\left(x-y\right)}{\left(x-y\right).\left(x+y\right)}+\frac{1.\left(x+y\right)}{\left(x-y\right).\left(x+y\right)}+\frac{3x}{\left(x-y\right).\left(x+y\right)}\)

\(=\frac{2x-2y}{\left(x-y\right).\left(x+y\right)}+\frac{x+y}{\left(x-y\right).\left(x+y\right)}+\frac{3x}{\left(x-y\right).\left(x+y\right)}\)

\(=\frac{2x-2y+x+y+3x}{\left(x-y\right).\left(x+y\right)}\)

\(=\frac{6x-y}{\left(x-y\right).\left(x+y\right)}\)

c) \(x+y+\frac{x^2+y^2}{x+y}\)

\(=\frac{x+y}{1}+\frac{x^2+y^2}{x+y}\)

\(=\frac{\left(x+y\right).\left(x+y\right)}{x+y}+\frac{x^2+y^2}{x+y}\)

\(=\frac{\left(x+y\right)^2}{x+y}+\frac{x^2+y^2}{x+y}\)

\(=\frac{x^2+2xy+y^2}{x+y}+\frac{x^2+y^2}{x+y}\)

\(=\frac{x^2+2xy+y^2+x^2+y^2}{x+y}\)

\(=\frac{2x^2+2xy+2y^2}{x+y}.\)

Chúc bạn học tốt!

Bài 1: Biến đổi mỗi biểu thức sau thành một phân thức đại số: a) \(\frac{\frac{x}{y}+\frac{y}{x}-2}{\frac{x}{y}-\frac{y}{x}}\) b) \(\frac{1-\frac{2}{x+1}}{1-\frac{x^2-2}{x^2-1}}\) c) \(\frac{\frac{x+1}{x-1}-\frac{x-1}{x+1}}{1-\frac{x-1}{x+1}}\) Bài 2: Thực hiện phép tính: a) \(\left(\frac{2x+1}{2x-1}-\frac{2x-1}{2x+1}\right):\frac{4x}{10x-5}\) b) \(\left(\frac{1}{x^2+x}-\frac{2-x}{x+1}\right):\left(\frac{1}{x}+x-2\right)\) Bài 3: Cho biểu thức...
Đọc tiếp

Bài 1: Biến đổi mỗi biểu thức sau thành một phân thức đại số:

a) \(\frac{\frac{x}{y}+\frac{y}{x}-2}{\frac{x}{y}-\frac{y}{x}}\) b) \(\frac{1-\frac{2}{x+1}}{1-\frac{x^2-2}{x^2-1}}\) c) \(\frac{\frac{x+1}{x-1}-\frac{x-1}{x+1}}{1-\frac{x-1}{x+1}}\)

Bài 2: Thực hiện phép tính:

a) \(\left(\frac{2x+1}{2x-1}-\frac{2x-1}{2x+1}\right):\frac{4x}{10x-5}\) b) \(\left(\frac{1}{x^2+x}-\frac{2-x}{x+1}\right):\left(\frac{1}{x}+x-2\right)\)

Bài 3: Cho biểu thức \(\left(\frac{x+1}{2x-2}-\frac{3}{1-x^2}-\frac{x+3}{2x+2}\right).\frac{4x^2-4}{5}\)

a) Hãy tìm điều kiện của x để biểu thức được xác định.

b) Rút gọn biểu thức.

Bài 4: Cho biểu thức: \(A=\left(\frac{x}{x^2-4}+\frac{2}{2-x}+\frac{1}{x+2}\right):\left(x-2+\frac{10-x^2}{x+2}\right)\)

a) Rút gọn biểu thức A.

b) Tính giá trị biểu thức A tại x, biết |x| = \(\frac{1}{2}\)

c) Tìm giá trị của x để A < 0.

Các cậu giúp tớ với nha ~ Tớ cảm ơn trước ^^

5
AH
Akai Haruma
Giáo viên
28 tháng 6 2019

Bài 2:

a) ĐK: $x\geq \pm \frac{1}{2}; x\neq 0$

\(\left(\frac{2x+1}{2x-1}-\frac{2x-1}{2x+1}\right):\frac{4x}{10x-5}=\frac{(2x+1)^2-(2x-1)^2}{(2x-1)(2x+1)}.\frac{10x-5}{4x}\)

\(\frac{4x^2+4x+1-(4x^2-4x+1)}{(2x-1)(2x+1)}.\frac{5(2x-1)}{4x}=\frac{8x}{(2x-1)(2x+1)}.\frac{5(2x-1)}{4x}\)

\(=\frac{10}{2x+1}\)

b) ĐK : $x\neq 0;-1$

\(\left(\frac{1}{x^2+x}-\frac{2-x}{x+1}\right):\left(\frac{1}{x}+x-2\right)=\left(\frac{1}{x(x+1)}-\frac{x(2-x)}{x(x+1)}\right):\frac{1+x^2-2x}{x}\)

\(=\frac{1-2x+x^2}{x(x+1)}.\frac{x}{1+x^2-2x}=\frac{x}{x(x+1)}=\frac{1}{x+1}\)

AH
Akai Haruma
Giáo viên
28 tháng 6 2019

Bài 3:
a) ĐKXĐ: \(x\neq \pm 1\)

b)

\(A=\left(\frac{x+1}{2x-2}-\frac{3}{1-x^2}-\frac{x+3}{2x+2}\right).\frac{4x^2-4}{5}\)

\(=\left[\frac{(x+1)^2}{2(x-1)(x+1)}+\frac{6}{2(x-1)(x+1)}-\frac{(x+3)(x-1)}{2(x+1)(x-1)}\right].\frac{4(x^2-1)}{5}\)

\(=\frac{(x+1)^2+6-(x^2+2x-3)}{2(x-1)(x+1)}.\frac{4(x-1)(x+1)}{5}\)

\(=\frac{10}{2(x-1)(x+1)}.\frac{4(x-1)(x+1)}{5}=4\)

b: \(=\dfrac{1}{\left(x+1\right)\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+3\right)}\)

\(=\dfrac{\left(x+2\right)\left(x+3\right)+\left(x+1\right)\left(x+3\right)+\left(x+2\right)\left(x+1\right)}{\left(x+2\right)^2\cdot\left(x+1\right)\left(x+3\right)}\)

\(=\dfrac{x^2+5x+6+x^2+4x+3+x^2+3x+2}{\left(x+2\right)^2\cdot\left(x+1\right)\left(x+3\right)}\)

\(=\dfrac{3x^2+12x+11}{\left(x+2\right)^2\cdot\left(x+1\right)\left(x+3\right)}\)

16 tháng 8 2019

\(a,\frac{x+1}{x-2}+\frac{x-1}{x+2}=\frac{2\left(x^2+2\right)}{x^2-4}\)\(\Leftrightarrow\frac{x^2+3x+2+x^2-3x+2}{x^2-4}=\frac{2\left(x^2+2\right)}{x^2-4}\)

\(\Leftrightarrow2\left(x^2+2\right)=2\left(x^2+2\right)\)(luôn đúng)

Vậy pt có vô số nghiệm

\(b,\Leftrightarrow\left(2x+3\right)\left(\frac{3x+8}{2-7x}+1\right)=\left(x-5\right)\left(\frac{3x+8}{2-7x}+1\right)\)

\(\Leftrightarrow\left(\frac{3x+8}{2-7x}+1\right)\left(2x+3-x+5\right)=0\)\(\Leftrightarrow\left(\frac{-4x+10}{2-7x}\right)\left(x+8\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}-4x+10=0\\x+8=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{5}{2}\\x=-8\end{cases}}\)

Mấy câu rút gọn bạn quy đồng nha

16 tháng 8 2019

bạn có thể giải ra giúp mik đc ko?

17 tháng 1 2021

1) a) \(\frac{x}{x+1}+\frac{x^3-2x^2}{x^3+1}=\frac{x}{x+1}+\frac{x^3-2x^2}{\left(x+1\right)\left(x^2-x+1\right)}\)

\(=\frac{x\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}+\frac{x^3-2x^2}{\left(x+1\right)\left(x^2-x+1\right)}=\frac{x^3-x^2+x+x^3-2x^2}{\left(x+1\right)\left(x^2-x+1\right)}\)

\(=\frac{2x^3-3x^2+x}{\left(x+1\right)\left(x^2-x+1\right)}=\frac{x\left(x-1\right)\left(2x-1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\)

b) \(\frac{x+1}{2x-2}+\frac{3}{x^2-1}+\frac{x+3}{2x+2}=\frac{x+1}{2\left(x-1\right)}+\frac{3}{\left(x-1\right)\left(x+1\right)}+\frac{x+3}{2\left(x+1\right)}\)

\(=\frac{\left(x+1\right)^2}{2\left(x-1\right)\left(x+1\right)}+\frac{6}{2\left(x-1\right)\left(x+1\right)}+\frac{\left(x+3\right)\left(x-1\right)}{2\left(x+1\right)\left(x-1\right)}\)

\(=\frac{\left(x+1\right)^2+6+\left(x+3\right)\left(x-1\right)}{2\left(x-1\right)\left(x+1\right)}=\frac{x^2+2x+1+6+x^2+2x-3}{2\left(x-1\right)\left(x+1\right)}\)

\(=\frac{2x^2+4x+2}{2\left(x-1\right)\left(x+1\right)}=\frac{2\left(x+1\right)^2}{2\left(x-1\right)\left(x+1\right)}=\frac{x+1}{x-1}\)

2) Ta có A = \(\left(\frac{x^2+y^2}{x^2-y^2}-1\right).\frac{x-y}{4y}=\frac{2y^2}{x^2-y^2}.\frac{x-y}{4y}=\frac{2y^2\left(x-y\right)}{\left(x-y\right)\left(x+y\right).4y}=\frac{y}{2\left(x+y\right)}\)

Thay x = 14 ; y = -15 vào biểu thức ta được 

\(A=\frac{y}{2\left(x+y\right)}=\frac{-15}{2\left(14-15\right)}=\frac{-15}{-2}=7,5\)