Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Answer:
Câu 1:
\(\left(5x-x-\frac{1}{2}\right)2x\)
\(=\left(4x-\frac{1}{2}\right)2x\)
\(=4x.2x-\frac{1}{2}.2x\)
\(=8x^2-x\)
\(\left(x^3+4x^2+3x+12\right)\left(x+4\right)\)
\(=x\left(x^3+4x^2+3x+12\right)+4\left(x^3+4x^2+3x+12\right)\)
\(=x^4+4x^3+3x^2+12x+4x^3+16x^2+12x+48\)
\(=x^4+\left(4x^3+4x^3\right)+\left(3x^2+16x^2\right)+\left(12x+12x\right)+48\)
\(=x^4+8x^3+19x^2+24x+48\)
Ta thay \(x=99\) vào phân thức \(\frac{x^2+1}{x-1}\): \(\frac{\left(99\right)^2+1}{99-1}=\frac{9802}{98}=\frac{4901}{49}\)
Ta thay \(x=4\) vào phân thức \(\frac{x^2-x}{2\left(x-1\right)}\) : \(\frac{4^2-4}{2.\left(4-1\right)}=\frac{12}{6}=2\)
\(\left(x+y\right)^2-\left(x-y\right)^2\)
\(= (x²+2xy+y²)-(x²-2xy+y²)\)
\(= x²+2xy+y²-x²+2xy-y²\)
\(= 4xy\)
\(4x^2+4x+1=\left(2x+1\right)^2=\left(2.2+1\right)^2=25\)
Câu 2:
\(x^2+x=0\)
\(\Rightarrow x\left(x+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)
\(x^2.\left(x-1\right)+4-4x=0\)
\(\Rightarrow x^2.\left(x-1\right)+4\left(1-x\right)=0\)
\(\Rightarrow\left(x-1\right)\left(x^2-4\right)=0\)
\(\Rightarrow\left(x-1\right)\left(x-2\right)\left(x+2\right)=0\)
Trường hợp 1: \(x-1=0\Rightarrow x=1\)
Trường hợp 2: \(x-2=0\Rightarrow x=2\)
Trường hợp 3: \(x+2=0\Rightarrow x=-2\)
Câu 3: Bạn xem lại đề bài nhé.
Bài 1:
a) \(x^3-5x^2+8x-4\)
\(=x^3-4x^2+4x-x^2+4x-4\) \(=x\left(x^2-4x+4\right)-\left(x^2-4x+4\right)\)\(=\left(x-1\right)\left(x-2\right)^2\)
b) Ta có: \(\frac{A}{M}=\frac{10x^2-7x-5}{2x-3}=5x+4+\frac{7}{2x-3}\)
Với \(x\in Z\)thì \(A⋮M\)khi \(\frac{7}{2x-3}\in Z\)\(\Rightarrow7⋮\left(2x-3\right)\)\(\Rightarrow2x-3\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
\(\Rightarrow=\left\{1;5;\pm2\right\}\)thì khi đó \(A⋮M\)
Các bài làm này có đúng ko ạ, ai đó duyệt giúp em, em cảm ơn.
Bài 1:
a)x3-5x2+8x-4=x3-4x2+4x-x2+4x-4
=x(x2-4x-4)-(x2-4x+4)
=(x-1) (x-2)2
b)Xét:
\(\frac{a}{b}-\frac{10x^2-7x-5}{2x-3}\)
=\(5x+4+\frac{7}{2x-3}\)
Với x thuộc Z thì A /\ B khi \(\frac{7}{2x-3}\) thuộc Z => 7 /\ (2x-3)
Mà Ư(7)={-1;1;-7;7} => x=5;-2;2;1 thì A /\ B
c)Biến đổi \(\frac{x}{y^3-1}-\frac{x}{x^3-1}=\frac{x^4-x-y^4+y}{\left(y^3-1\right)\left(x^3-1\right)}\)
=\(\frac{\left(x^4-y^4\right)\left(x-y\right)}{xy\left(y^2+y+1\right)\left(x^2+x+1\right)}\)(do x+y=1=>y-1=-x và x-1=-y)
=\(\frac{\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)-\left(x-y\right)}{xy\left[x^2y^2+y^2x+y^2+xy^2+xy+y+x^2+x+1\right]}\)
=\(\frac{\left(x-y\right)\left(x^2+y^2-1\right)}{xy\left[x^2y^2+xy\left(x+y\right)+x^2+y^2+xy+2\right]}\)
=\(\frac{\left(x-y\right)\left(x^2-x+y^2-y\right)}{xy\left[x^2y^2+\left(x+y\right)^2+2\right]}=\frac{\left(x-y\right)\left[x\left(x-1\right)+y\left(y-1\right)\right]}{xy\left(x^2y^2+3\right)}\)
=\(\frac{\left(x-y\right)\left[x\left(-y\right)+y\left(-x\right)\right]}{xy\left(x^2y^2+3\right)}=\frac{\left(x-y\right)\left(-2xy\right)}{xy\left(x^2y^2+3\right)}\)
=\(\frac{-2\left(x-y\right)}{x^2y^2+3}\)Suy ra điều phải chứng minh
Bài 2 )
a)(x2+x)2+4(x2+x)=12 đặt y=x2+x
y2+4y-12=0 <=>y2+6y-2y-12=0
<=>(y+6)(y-2)=0 <=> y=-6;y=2
>x2+x=-6 vô nghiệm vì x2+x+6 > 0 với mọi x
>x2+x=2 <=> x2+x-2=0 <=> x2+2x-x-2=0
<=>x(x+2)-(x+2)=0 <=>(x+2)(x-1) <=> x=-2;x-1
Vậy nghiệm của phương trình x=-2;x=1
b)\(\frac{x+1}{2008}+\frac{x+2}{2007}+\frac{x+3}{2006}+\frac{x+4}{2005}+\frac{x+5}{2004}\)\(+\frac{x+6}{2003}\)
=\(\left(\frac{x+1}{2008}+1\right)+\left(\frac{x+2}{2007}+1\right)+\left(\frac{x+3}{2006}+1\right)+\left(\frac{x+4}{2005}+1\right)\)\(+\left(\frac{x+5}{2004}+1\right)+\left(\frac{x+6}{2003}+1\right)\)
<=>\(\frac{x+2009}{2008}+\frac{x+2009}{2007}+\frac{x+2009}{2006}-\frac{x+2009}{2005}\)\(+\frac{x+2009}{2004}+\frac{x+2009}{2003}\)
<=>\(\frac{x+2009}{2008}+\frac{x+2009}{2007}+\frac{x+2009}{2006}\)\(-\frac{x+2009}{2005}-\frac{x+2009}{2004}-\frac{x+2009}{2003}=0\)
Nhờ OLM xét giùm em vs ạ !
Câu 2:
a) \(ĐKXĐ:x\ne1\)
\(A=\left(\frac{1}{x-1}-\frac{2x}{x^3+x-x^2-1}\right)\div\left(1-\frac{2x}{x^2+1}\right)\)
\(\Leftrightarrow A=\left(\frac{1}{x-1}-\frac{2x}{\left(x-1\right)\left(x^2+1\right)}\right)\div\frac{x^2-2x+1}{x^2+1}\)
\(\Leftrightarrow A=\frac{x^2+1-2x}{\left(x-1\right)\left(x^2+1\right)}\div\frac{\left(x-1\right)^2}{x^2+1}\)
\(\Leftrightarrow A=\frac{\left(x-1\right)^2\left(x^2+1\right)}{\left(x-1\right)\left(x^2+1\right)\left(x-1\right)^2}\)
\(\Leftrightarrow A=\frac{1}{x-1}\)
b) Để A > 0
\(\Leftrightarrow x-1>0\)(Vì\(1>0\))
\(\Leftrightarrow x>1\)
A = \(\frac{1}{x}\left(\frac{x^2-xy}{x+y}\right)^2\left[\frac{x+y}{\left(x-y\right)^2}+\frac{x+y}{xy-y^2}\right]-\frac{x}{x+y}\)
A = \(\frac{1}{x}\left(\frac{x^2-xy}{x+y}\right)^2\left[\frac{x+y}{\left(x-y\right)^2}+\frac{x+y}{y\left(x-y\right)}\right]-\frac{x}{x+y}\)
A = \(\frac{1}{x}\left[\frac{x\left(x-y\right)}{x+y}\right]^2\left[\frac{y\left(x+y\right)+\left(x-y\right)\left(x+y\right)}{y\left(x-y\right)^2}\right]-\frac{x}{x+y}\)
A = \(\frac{1}{x}\cdot\frac{x^2\left(x-y\right)^2}{\left(x+y\right)^2}\left[\frac{xy+y^2+x^2-y^2}{y\left(x-y\right)^2}\right]-\frac{x}{x+y}\)
A = \(\frac{x\left(x-y\right)^2}{\left(x+y\right)^2}\cdot\frac{x\left(x+y\right)}{y\left(x-y\right)^2}-\frac{x}{x+y}\)
A = \(\frac{x^2}{y\left(x+y\right)}-\frac{x}{x+y}\)
A = \(\frac{x^2-xy}{y\left(x+y\right)}\)
2, \(\frac{x^2}{2}+\frac{y^2}{3}+\frac{z^2}{4}=\frac{x^2+y^2+z^2}{5}\)
<=>\(\left(\frac{x^2}{2}-\frac{x^2}{5}\right)+\left(\frac{y^2}{3}-\frac{y^2}{5}\right)+\left(\frac{z^2}{4}-\frac{z^2}{5}\right)=0\)
<=>\(\frac{3}{10}x^2+\frac{2}{15}y^2+\frac{1}{20}z^2=0\)
<=>x=y=z=0
4,
a, \(\frac{1}{x\left(x^2+1\right)}=\frac{a}{x}+\frac{bx+c}{x^2+1}\)
=>\(\frac{1}{x\left(x^2+1\right)}=\frac{ax^2+a+bx^2+cx}{x\left(x^2+1\right)}=\frac{\left(a+b\right)x^2+cx+a}{x\left(x^2+1\right)}\)
Đồng nhất 2 phân thức ta được:
\(\hept{\begin{cases}a+b=0\\c=0\\a=1\end{cases}\Leftrightarrow\hept{\begin{cases}b=-1\\c=0\\a=1\end{cases}}}\)
b,a=1/4,b=-1/4
c, a=-1,b=1,c=1