K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 7 2017

a) Ta có : x(x + 4)(x - 4) - (x2 + 1)(x2 - 1)

= x(x2 - 16) - (x4 - 1)

= x3 - 16x - x4 + 1

= x(x2 - 16 - x3) + 1

4 tháng 7 2017

\(a,x.\left(x+4\right)\left(x-4\right)-\left(x^2+1\right)\left(x^2-1\right)=x\left(x^2-16\right)-x^4+1=x^3-16x=x^4+1\)

\(\left(a+b+c\right)^2+\left(b+c-a\right)^2+\left(c+a-b\right)^2+\left(a+b-c\right)^2\)

\(=4a^2+4b^2+4c^2\)

\(=4\left(a^2+b^2+c^2\right)\)

Ta có \(P=\frac{\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)}{a^2-ab+b^2+b^2-bc+c^2+c^2-ac+a^2}\)

\(=\frac{5\left(...\right)}{2\left(...\right)}=\frac{5}{2}\)

5 tháng 7 2016

Các bạn cố gắng giúp mình nha . Mình xin chân thành cảm ơn 

5 tháng 12 2018

\(\left(a+b\right)^2-\left(a-b\right)^2\)

\(=\left(a+b-a+b\right)\left(a+b-a-b\right)\)

\(=2a.2b=4ab\)

=> câu trả lời là a . 4ab

20 tháng 12 2016

n *o biets

21 tháng 9 2018

dùng thước đo và so sánh BH và HC nếu ab = ac thì có thể suy ra HB = HC không

21 tháng 9 2018

\(a+b+c=0\Rightarrow\left(a+b+c\right)^2=0\Rightarrow a^2+b^2+c^2+2ab+2ac+2bc=0\)

\(\Rightarrow2ac+2bc+2ab=-14\)

\(\Rightarrow ac+ab+bc=-7\)

\(\left(ac+bc+ab\right)^2=49\)

\(a^2c^2+b^2c^2+a^2b^2+2abc^2+2ab^2c+2a^2bc=49\)

\(\Rightarrow a^2c^2+b^2c^2+a^2b^2+2abc\left(a+b+c\right)=49\)

\(\Rightarrow a^2c^2+b^2c^2+a^2b^2=49\)

Có \(a^2+b^2+c^2=14\Rightarrow\left(a^2+b^2+c^2\right)^2=196\)

\(\Rightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+a^2c^2\right)=196\)

\(\Rightarrow a^4+b^4+c^4=196-2.49=196-98=98\)

19 tháng 12 2016

a) \(\frac{a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)}{ab^2-ac^2-b^3+bc^2}\)

\(=\frac{a^2b-a^2c+b^2c-b^2a+c^2\left(a-b\right)}{ab^2-b^3-ac^2+bc^2}\)

\(=\frac{\left(a^2b-b^2a\right)+\left(b^2c-a^2c\right)+c^2\left(a-b\right)}{b^2\left(a-b\right)-c^2\left(a-b\right)}\)

\(=\frac{ab\left(a-b\right)+c\left(b^2-a^2\right)+c^2\left(a-b\right)}{\left(b^2-c^2\right)\left(a-b\right)}\)

\(=\frac{ab\left(a-b\right)-c\left(a-b\right)\left(a+b\right)+c^2\left(a-b\right)}{\left(b-c\right)\left(b+c\right)\left(a-b\right)}\)

\(=\frac{ab-c\left(a+b\right)+c^2}{\left(b-c\right)\left(b+c\right)}\)

\(=\frac{ab-ac+c^2-bc}{\left(b-c\right)\left(b+c\right)}\)

\(=\frac{a\left(b-c\right)-c\left(b-c\right)}{\left(b-c\right)\left(b+c\right)}\)

\(=\frac{\left(b-c\right)\left(a-c\right)}{\left(b-c\right)\left(b+c\right)}\)

\(=\frac{a-b}{b+c}\)

19 tháng 12 2016

Sửa lại: \(\frac{a-c}{b+c}\)

4 tháng 7 2017

Ta có:

a) A = 2018 x 2020 = (2019 - 1) x (2019 + 1)

Áp dụng hằng đẳng thức thứ ba ta có:

A = 208 x 2020 = \(2019^2-1^2=2019^2-1\)

\(2019^2-1< 2019^2\)

\(\Rightarrow\)A < B

b) A = \(\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^2-1^2\right)\left(2^2+1^2\right)\left(2^4+1^2\right)\left(2^8+1^2\right)\left(2^{16}+1^2\right)\)

\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^{16}-1\right)\left(2^{16}+1\right)\)

\(=2^{32}-1\)

\(2^{32}-1< 2^{32}\)

\(\Rightarrow\)A < B

4 tháng 7 2017

a) Áp dụng hàng đăng thức (a - b) (a + b) = a2 - b2

Ta có : A = 2018.2020 = (2019 - 1) (2019 + 1) = 20192 - 1

Mà B =  20192 

Nên A < B