\(\dfrac{x}{x-2}+\dfrac{x^2+x-2}{4-x^2}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 1 2022

\(A=\dfrac{x}{x-2}-\dfrac{x^2+x-2}{x^2-4}=\dfrac{x^2+2x-x^2-x+2}{\left(x-2\right)\left(x+2\right)}=\dfrac{x+2}{\left(x-2\right)\left(x+2\right)}=\dfrac{1}{x-2}\)

11 tháng 1 2022

\(A=\dfrac{x}{x-2}+\dfrac{x^2+x-2}{4-x^2}\left(x\ne\pm2\right).\)

\(A=\dfrac{x}{x-2}-\dfrac{\left(x-1\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}=\dfrac{x}{x-2}-\dfrac{x-1}{x-2}=\dfrac{x-x+1}{x-2}=\dfrac{1}{x-2.}\)

a: \(=\dfrac{x^4+15x+7}{x^4+15x+7}\cdot\dfrac{x}{14x^2+1}\cdot\dfrac{4x^3+4}{2x^3+2}=\dfrac{2x}{14x^2+1}\)

b: \(=\dfrac{x^7+3x^2+2}{x^7+3x^2+2}\cdot\dfrac{x^2+x+1}{x^3-1}\cdot\dfrac{3x}{x+1}\)

\(=\dfrac{1}{x-1}\cdot\dfrac{3x}{x+1}=\dfrac{3x}{x^2-1}\)

28 tháng 6 2017

Phép trừ các phân thức đại số

a: A=[(3x^2+3-x^2+2x-1-x^2-x-1)/(x-1)(x^2+x+1)]*(x-2)/2x^2-5x+5

=(x^2+x+1)/(x-1)(x^2+x+1)*(x-2)/2x^2-5x+5

=(x-2)/(2x^2-5x+5)(x-1)

 

28 tháng 6 2017

C=\(\frac{\sqrt{x+2-4\sqrt{x-2}}+\sqrt{x+2+4\sqrt{x-2}}}{\sqrt{\frac{4}{x^2}-\frac{4}{x}+1}}\)=\(\frac{\sqrt{\left(\sqrt{x-2}-2\right)^2}+\sqrt{\left(\sqrt{x-2}+2\right)^2}}{\sqrt{\left(\frac{2}{x}-1\right)^2}}\)

=\(\frac{\sqrt{x-2}-2+\sqrt{x-2}+2}{\frac{2}{x}-1}\)=\(\frac{2\sqrt{x-2}}{\frac{2}{x}-1}\)=\(\frac{-2x}{\sqrt{x-2}}\)

2 tháng 6 2018

6\(C=\frac{\sqrt{x+2-4\sqrt{x-2}}+\sqrt{x+2+4\sqrt{x-2}}}{\sqrt{\frac{4}{x^2}-\frac{4}{x}+1}}\) Điều kiện xác định :\(\hept{\begin{cases}x>2\\x\ne6\end{cases}}\)

\(=\frac{\sqrt{x-2-4\sqrt{x-2}+4}+\sqrt{x-2+4\sqrt{x-2}+4}}{\sqrt{\left(\frac{2}{x}-1\right)^2}}\)

\(=\frac{\sqrt{\left(\sqrt{x-2}-2\right)^2}+\sqrt{\left(\sqrt{x-2}+2\right)^2}}{\left|\frac{2}{x}-1\right|}\)

\(=\frac{\left|\sqrt{x-2}-2\right|+\left|\sqrt{x-2}+2\right|}{\left|\frac{2}{x}-1\right|}\)

-Vì x>2 nên \(\frac{2}{x}< \frac{2}{2}=1\)\(\Rightarrow\frac{2}{x}-1< 0\)

\(\sqrt{x-2}\ge0\)nên\(\sqrt{x-2}+2>0\)

Do đó \(C=\frac{\left|\sqrt{x-2}-2\right|+\sqrt{x-2}+2}{1-\frac{2}{x}}\)

*Với x<6 và x>2 \(\Rightarrow x-2< 4\)\(\Rightarrow\sqrt{x-2}< \sqrt{4}=2\)

\(\Rightarrow\sqrt{x-2}-2< 0\)

Cho nên \(C=\frac{2-\sqrt{x-2}+\sqrt{x-2}+2}{1-\frac{2}{x}}\)

\(=\frac{4}{\frac{x-2}{x}}\)

\(=\frac{4x}{x-2}\)

*Với x>6 (không cho x=6 vì để C xác định) 

\(\Rightarrow\sqrt{x-2}>\sqrt{4}=2\)\(\Rightarrow\sqrt{x-2}-2>0\)

Cho nên \(C=\frac{\sqrt{x-2}-2+\sqrt{x-2}+2}{1-\frac{2}{x}}\)

\(=\frac{2\sqrt{x-2}}{\frac{x-2}{x}}\)

\(=\frac{2x\sqrt{x-2}}{x-2}\)

Lưu ý là không nên để căn ở mẫu.

24 tháng 4 2017

Giải bài 14 trang 131 SGK Toán 8 Tập 2 | Giải toán lớp 8Giải bài 14 trang 131 SGK Toán 8 Tập 2 | Giải toán lớp 8

GV
24 tháng 4 2017

Lời giải của bạn Nhật Linh đúng rồi, tuy nhiên cần thêm điều kiện để A có nghĩa: \(x\ne\pm2\)

2 tháng 8 2017

ĐK \(\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}\)

Ta có \(A=\left(\frac{1}{\sqrt{x}-1}+\frac{x-\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\right):\left(\frac{\sqrt{x}+1}{\sqrt{x}+2}-\frac{x-\sqrt{x}-4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\right)\)

\(=\frac{\sqrt{x}+2+x-\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}:\frac{x-1-x+\sqrt{x}+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

\(=\frac{x+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}.\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}{\sqrt{x}+3}=\frac{x+3}{\sqrt{x}+3}\)

28 tháng 6 2017

Phép nhân các phân thức đại số

a: \(=\dfrac{x^2+2x+1-x^2+2x-1}{\left(x-1\right)\left(x+1\right)}:\left(\dfrac{1}{x+1}+\dfrac{x}{x-1}+\dfrac{2}{\left(x-1\right)\left(x+1\right)}\right)\)

\(=\dfrac{4x}{\left(x-1\right)\left(x+1\right)}:\dfrac{x-1+x^2+x+2}{\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{4x}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{\left(x-1\right)\left(x+1\right)}{x^2+2x+1}=\dfrac{4x}{x^2+2x+1}\)

b: \(=\dfrac{x+2}{-\left(x-2\right)}\cdot\dfrac{\left(x-2\right)^2}{4x^2}\cdot\left(\dfrac{2}{2-x}-\dfrac{4}{\left(x+2\right)\left(x^2-2x+4\right)}\cdot\dfrac{x^2-2x+4}{2-x}\right)\)

\(=\dfrac{-\left(x+2\right)\left(x-2\right)}{4x^2}\cdot\left(\dfrac{2}{2-x}-\dfrac{4}{\left(x+2\right)\left(2-x\right)}\right)\)

\(=\dfrac{-\left(x+2\right)\left(x-2\right)}{4x^2}\cdot\dfrac{2x+4-4}{\left(2-x\right)\left(x+2\right)}\)

\(=\dfrac{2x}{4x^2}=\dfrac{1}{2x}\)

29 tháng 6 2017

Phép chia các phân thức đại số