\(I=s\left(s^2-t\right)+\left(t^2+s\right)\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 6 2021

a, \(I=s\left(s^2-t\right)+\left(t^2+s\right)=s^3-st+t^2+s\)

Thay t = -1 và s = 1 vào biểu thức trên ta được :

\(1+1+1+1=4\)

b, \(N=u^2\left(u-v\right)-v\left(v^2-u^2\right)=u^2\left(u-v\right)+v\left(u+v\right)\left(u-v\right)\)

\(=\left(u-v\right)\left(u^2+v\left(u+v\right)\right)\)

Thay \(u=0,5=\frac{1}{2};v=-\frac{1}{2}\)

\(=\left(\frac{1}{2}+\frac{1}{2}\right).\frac{1}{4}=\frac{1}{4}\)

25 tháng 7 2017

Câu 1: \(3x+2\left(5-x\right)=0\)

\(\Rightarrow3x+10-2x=0\)

\(\Rightarrow x+10=0\)

\(\Rightarrow x=-10\).

Câu 2: \(2x\left(5-3x\right)+2x\left(3x-5\right)-3\left(x-7\right)=3\)

\(\Rightarrow2x\left(5-3x\right)-2x\left(5-3x\right)-3\left(x-7\right)=0\)

\(\Rightarrow\left(2x-2x\right)\left(5-3x\right)-3\left(x-7\right)=3\)

\(\Rightarrow-3\left(x-7\right)=3\)

\(\Rightarrow x-7=-1\)

\(\Rightarrow x=6.\)

25 tháng 7 2017

Câu 3:

Áp dụng hằng đẳng thức mở rộng có:

\(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)

\(=a^3+b^3+c^3-3abc.\)

Câu 4: \(3x^2\left(3x^2-2y^2\right)-\left(3x^2-2y^2\right)\left(3x^2+2y^2\right)\)

\(=\left(3x^2-2y^2\right)\left[3x^2-\left(3x^2+2y^2\right)\right]\)

\(=\left(3x^2-2y^2\right)\left(-2y^2\right)\)

\(=-6x^2y^2+4y^3.\)

Câu 5:

Ta có: \(R=\left(2x-3\right)\left(4+6x\right)-\left(6-3x\right)\left(4x-2\right)\)

\(=\left(8x-12+12x^2-18x\right)-\left(24x-12x^2-12+6x\right)\)

\(=12x^2-10x-12-24x+12x^2+12-6x\)

\(=24x^2-40x.\)

a: \(=3x+5-3x+\dfrac{5}{3}-3x-1=3x+\dfrac{17}{3}\)

b: \(=\left(3a+2-3a+2\right)^2=4^2=16\)

18 tháng 9 2015

mk thấy bn Quán quân hơn

21 tháng 12 2021

Answer:

Câu 1:

\(\left(5x-x-\frac{1}{2}\right)2x\)

\(=\left(4x-\frac{1}{2}\right)2x\)

\(=4x.2x-\frac{1}{2}.2x\)

\(=8x^2-x\)

\(\left(x^3+4x^2+3x+12\right)\left(x+4\right)\)

\(=x\left(x^3+4x^2+3x+12\right)+4\left(x^3+4x^2+3x+12\right)\)

\(=x^4+4x^3+3x^2+12x+4x^3+16x^2+12x+48\)

\(=x^4+\left(4x^3+4x^3\right)+\left(3x^2+16x^2\right)+\left(12x+12x\right)+48\)

\(=x^4+8x^3+19x^2+24x+48\)

Ta thay \(x=99\) vào phân thức \(\frac{x^2+1}{x-1}\)\(\frac{\left(99\right)^2+1}{99-1}=\frac{9802}{98}=\frac{4901}{49}\)

Ta thay \(x=4\) vào phân thức \(\frac{x^2-x}{2\left(x-1\right)}\) : \(\frac{4^2-4}{2.\left(4-1\right)}=\frac{12}{6}=2\)

\(\left(x+y\right)^2-\left(x-y\right)^2\)

\(= (x²+2xy+y²)-(x²-2xy+y²)\)

\(= x²+2xy+y²-x²+2xy-y²\)

\(= 4xy\)

\(4x^2+4x+1=\left(2x+1\right)^2=\left(2.2+1\right)^2=25\)

Câu 2:

\(x^2+x=0\)

\(\Rightarrow x\left(x+1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=0\\x+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)

\(x^2.\left(x-1\right)+4-4x=0\)

\(\Rightarrow x^2.\left(x-1\right)+4\left(1-x\right)=0\)

\(\Rightarrow\left(x-1\right)\left(x^2-4\right)=0\)

\(\Rightarrow\left(x-1\right)\left(x-2\right)\left(x+2\right)=0\)

Trường hợp 1: \(x-1=0\Rightarrow x=1\)

Trường hợp 2: \(x-2=0\Rightarrow x=2\)

Trường hợp 3: \(x+2=0\Rightarrow x=-2\)

Câu 3: Bạn xem lại đề bài nhé.