K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 7 2019

a, A = \(3\sqrt{3}+4\sqrt{12}-5\sqrt{27}\)

= \(3\sqrt{3}+8\sqrt{3}-15\sqrt{3}\)

= \(-4\sqrt{3}\)

b, B = \(\sqrt{32}-\sqrt{50}+\sqrt{18}\)

= \(4\sqrt{2}-5\sqrt{2}+3\sqrt{2}\)

= \(2\sqrt{2}\)

14 tháng 10 2020

a) \(=\sqrt{\frac{9}{2}}-\sqrt{16.2}+\sqrt{36.2}-\sqrt{81.2}\)

\(=\frac{3}{2}\sqrt{2}-4\sqrt{2}+6\sqrt{2}-9\sqrt{2}\)

\(=\left(\frac{3}{2}-4+6-9\right)\sqrt{2}=\frac{-11}{2}\sqrt{2}\)

b) \(=\frac{\sqrt{5}+3-\sqrt{5}+3}{\left(\sqrt{5}-3\right)\left(\sqrt{5}+3\right)}.\frac{\sqrt{3}\left(\sqrt{3}-1\right)}{1-\sqrt{3}}\)

\(=\frac{6}{5-9}.\left(-\sqrt{3}\right)=\frac{3}{2}\sqrt{3}\)

c) \(=\left(\frac{a-1-4\sqrt{a}+\sqrt{a}+1}{a-1}\right):\frac{\sqrt{a}\left(\sqrt{a}-2\right)}{a-1}\)

\(=\frac{a-3\sqrt{a}}{a-1}.\frac{a-1}{\sqrt{a}\left(\sqrt{a}-2\right)}\)

\(=\frac{\sqrt{a}\left(\sqrt{a}-3\right)}{\sqrt{a}\left(\sqrt{a}-2\right)}=\frac{\sqrt{a}-3}{\sqrt{a}-2}\)

a: \(A=\left(1-\sqrt{7}\right)\cdot\left(1+\sqrt{7}\right)=1-7=-6\)

b: \(B=3\sqrt{3}+8\sqrt{3}-15\sqrt{3}=-4\sqrt{3}\)

c: \(C=4\sqrt{2}-5\sqrt{2}+3\sqrt{2}=2\sqrt{2}\)

17 tháng 1 2022

a) \(A=2\sqrt{8}-3\sqrt{32}+\sqrt{50}\)

\(A=2\sqrt{4.2}-3\sqrt{16.2}+\sqrt{25.2}\)

\(A=2.2\sqrt{2}-3.4\sqrt{2}+5\sqrt{2}\)

\(A=4\sqrt{2}-12\sqrt{2}+5\sqrt{2}\)

\(A=\left(4-12+5\right)\sqrt{2}\)

\(A=-3\sqrt{2}\)

b) \(B=\sqrt{12}+4\sqrt{27}-3\sqrt{48}\)

\(B=\sqrt{4.3}+4\sqrt{9.3}-3\sqrt{16.3}\)

\(B=2\sqrt{3}+4.3\sqrt{3}-3.4\sqrt{3}\)

\(B=2\sqrt{3}\)

c) \(C=\sqrt{20a}+4\sqrt{45a}-2\sqrt{125a}\left(a\ge0\right)\)

\(C=\sqrt{4.5a}+4\sqrt{9.5a}-2\sqrt{25.5a}\)

\(C=2\sqrt{5a}+4.3\sqrt{5a}-2.5\sqrt{5a}\)

\(C=2\sqrt{5a}+12\sqrt{5a}-10\sqrt{5a}\)

\(C=\left(2+12-10\right)\sqrt{5a}\)

\(C=4\sqrt{5a}\)

24 tháng 1 2022

a) ta có \(2\sqrt{8}=2\sqrt{4.2}=4\sqrt{2},3\sqrt{32}=3\sqrt{16.2}=12\sqrt{2},\sqrt{50}=\sqrt{25.2}=5\sqrt{2}\)                               \(\Rightarrow A=4\sqrt{2}-12\sqrt{2}+5\sqrt{2}=-3\sqrt{2}\)                                                                                              b) ta có \(\sqrt{12}=\sqrt{4.3}=2\sqrt{3},4\sqrt{27}=4\sqrt{9.3}=12\sqrt{3},3\sqrt{48}=3\sqrt{16.3}=12\sqrt{3}\Rightarrow B=2\sqrt{3}+12\sqrt{3}-12\sqrt{3}=26\sqrt{3}\)c) ta có \(\sqrt{20a}=\sqrt{4.5a}=2\sqrt{5a},4\sqrt{45a}=4\sqrt{9.5a}=12\sqrt{5a},2\sqrt{125a}=2\sqrt{25.5a}=10\sqrt{5a}\Rightarrow C=2\sqrt{5a}+12\sqrt{5a}-10\sqrt{5a}=4\sqrt{5a}\)   

a: Ta có: \(\sqrt{8+2\sqrt{15}}-\sqrt{6+2\sqrt{5}}\)

\(=\sqrt{5}+\sqrt{3}-\sqrt{5}-1\)

\(=\sqrt{3}-1\)

b: Ta có: \(\sqrt{17-2\sqrt{72}}+\sqrt{19+2\sqrt{18}}\)

\(=3-2\sqrt{2}+3\sqrt{2}+1\)

\(=4+\sqrt{2}\)

c: Ta có: \(\sqrt{12-2\sqrt{32}}+\sqrt{9+4\sqrt{2}}\)

\(=2\sqrt{2}-2+2\sqrt{2}+1\)

\(=4\sqrt{2}-1\)

22 tháng 8 2021

a)

\(\sqrt{8+2\sqrt{15}}-\sqrt{6+2\sqrt{5}}\\ =\sqrt{5+2\sqrt{5}\cdot\sqrt{3}+3}-\sqrt{5+2\sqrt{5}\cdot\sqrt{1}+1}\\ =\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{5}+\sqrt{1}\right)^2}\\ =\sqrt{5}+\sqrt{3}-\sqrt{5}-\sqrt{1}\\ =\sqrt{3}-\sqrt{1}\)

b)

\(\sqrt{17-2\sqrt{72}}+\sqrt{19+2\sqrt{18}}\\ =\sqrt{9-2\sqrt{9}\cdot\sqrt{8}+8}+\sqrt{18+2\sqrt{18}\cdot\sqrt{1}+1}\\ =\sqrt{\left(3-2\sqrt{2}\right)^2}+\sqrt{\left(3\sqrt{2}+1\right)^2}\\ =3-2\sqrt{2}+3\sqrt{2}+1\\ =4+\sqrt{2}\)

c)

\(\sqrt{12-2\sqrt{32}}+\sqrt{9+4\sqrt{2}}\\ =\sqrt{8-2\sqrt{8}\cdot\sqrt{4}+4}+\sqrt{8+2\sqrt{8}\cdot\sqrt{1}+1}\\ =\sqrt{\left(2\sqrt{2}-2\right)^2}+\sqrt{\left(2\sqrt{2}+1\right)^2}\\ =2\sqrt{2}-2+2\sqrt{2}+1\\ =4\sqrt{2}-1\)

4 tháng 7 2021

\(a,=3\sqrt{2}-12\sqrt{2}+8\sqrt{2}-5\sqrt{2}\)

\(=\sqrt{2}\left(3-12+8-5\right)=-6\sqrt{2}\)

\(b,=\left|\sqrt{2}-\sqrt{3}\right|+3\sqrt{2}=\sqrt{3}-\sqrt{2}+3\sqrt{2}=\sqrt{3}+2\sqrt{2}\)

\(c,=\sqrt{5}+\sqrt{5}+\dfrac{5}{\sqrt{5}}-1=3\sqrt{5}-1\)

\(d,=\sqrt{3-2.2\sqrt{3}+4}+\sqrt{\left(1+\sqrt{3}\right)^2}\)

\(=\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\left(1+\sqrt{3}\right)^2}\)

\(=2-\sqrt{3}+1+\sqrt{3}=2\)

4 tháng 7 2021

a) \(3\sqrt{2}-4\sqrt{18}+2\sqrt{32}-\sqrt{50}=3\sqrt{2}-4\sqrt{9.2}+2\sqrt{16.2}-\sqrt{25.2}\)

\(=3\sqrt{2}-12\sqrt{2}+8\sqrt{2}-5\sqrt{2}=-6\sqrt{2}\)

b) \(\sqrt{\left(\sqrt{2}-\sqrt{3}\right)^2}+\sqrt{18}=\left|\sqrt{2}-\sqrt{3}\right|+\sqrt{9.2}=\sqrt{3}-\sqrt{2}+3\sqrt{2}\)

\(=2\sqrt{2}+\sqrt{3}\)

c) \(5\sqrt{\dfrac{1}{5}}+\dfrac{1}{3}\sqrt{45}+\dfrac{5-\sqrt{5}}{\sqrt{5}}=\sqrt{25.\dfrac{1}{5}}+\dfrac{1}{3}\sqrt{9.5}+\dfrac{\sqrt{5}\left(\sqrt{5}-1\right)}{\sqrt{5}}\)

\(=\sqrt{5}+\sqrt{5}+\sqrt{5}-1=3\sqrt{5}-1\)

d) \(\sqrt{7-4\sqrt{3}}+\sqrt{\left(1+\sqrt{3}\right)^2}=\sqrt{2^2-2.2.\sqrt{3}+\left(\sqrt{3}\right)^2}+\left|\sqrt{3}+1\right|\)

\(=\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{3}+1=\left|2-\sqrt{3}\right|+\sqrt{3}+1=2-\sqrt{3}+\sqrt{3}+1=3\)

a: \(=\left(\sqrt{3}-2\right)\cdot\sqrt{\left(2+\sqrt{3}\right)^2}\)

\(=\left(\sqrt{3}-2\right)\left(\sqrt{3}+2\right)\)

=3-4=-1

b: \(=\sqrt{6+4\sqrt{2}}-\sqrt{11-2\sqrt{18}}\)

\(=\sqrt{\left(2+\sqrt{2}\right)^2}-\sqrt{\left(3-\sqrt{2}\right)^2}\)

\(=2+\sqrt{2}-3+\sqrt{2}=2\sqrt{2}-1\)

c: \(=\sqrt{\left(2\sqrt{5}-1\right)^2}+\sqrt{\left(2\sqrt{5}+1\right)^2}\)

\(=2\sqrt{5}-1+2\sqrt{5}+1\)

\(=4\sqrt{5}\)

22 tháng 11 2021

\(a.4\sqrt{2}+5\sqrt{2}-20\sqrt{2}+18\sqrt{2}=7\sqrt{2}\)

22 tháng 11 2021

\(a,=4\sqrt{2}+5\sqrt{2}-20\sqrt{2}+18\sqrt{2}=7\sqrt{2}\\ b,=\dfrac{3\left(\sqrt{2}+1\right)}{1}+\left|3-\sqrt{2}\right|-2\sqrt{2}\\ =3\sqrt{2}+3+3-\sqrt{2}-2\sqrt{2}=6\)

9 tháng 8 2016

\(3\sqrt{3}+4\sqrt{12}-5\sqrt{27}=3\sqrt{3}+8\sqrt{2}-15\sqrt{3}=-4\sqrt{3}\)

\(\sqrt{32}-\sqrt{50}+\sqrt{18}=4\sqrt{2}-5\sqrt{2}+3\sqrt{2}=2\sqrt{2}\)

3 tháng 1 2017

Hãy điền dấu phép tính sau

4        4          4= 6

TRẢ LỜI :

Để học tốt Toán 9 | Giải bài tập Toán 9

\(=\sqrt{5}+\sqrt{5}+\sqrt{5}=3\sqrt{5}\)

Để học tốt Toán 9 | Giải bài tập Toán 9

c) √20 - √45 + 3√18 + √72

= √4.5 - √9.5 + 3√9.2 + √36.2

= 2√5 - 3√5 + 9√2 + 6√2

= -√5 + 15√2

Để học tốt Toán 9 | Giải bài tập Toán 9

23 tháng 5 2021

a) 3√5                                           b) 9√2 / 2

c) -√5 + 15√2                                d)
3,4√2