\(2x-1-\dfrac{\sqrt{x^2-10x+25}}{x-5}\)

...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2018

\(2x-1-\dfrac{\sqrt{x^2-10x+25}}{x-5}=2x-1-\dfrac{\sqrt{\left(x-5\right)^2}}{x-5}=2x-1-\dfrac{\left|x-5\right|}{x-5}=\left[{}\begin{matrix}2x-1-1=2x-2khix-5>0\\2x-1+1=2xkhix-5< 0\end{matrix}\right.\)

30 tháng 7 2018

b) \(\dfrac{\sqrt{x^2-4x+4}}{x^2-2}=\dfrac{\sqrt{\left(x-2\right)^2}}{x^2-2}=\left[{}\begin{matrix}\dfrac{x-2}{x^2-2}khix-2\ge0\\\dfrac{2-x}{x^2-2}khix-2\le0\end{matrix}\right.\)

11 tháng 8 2018

\(a.\sqrt{1-4a+4a^2}-2a=\sqrt{\left(1-2a\right)^2}-2a=\left|1-2a\right|-2a\)

*\(a>\dfrac{1}{2}\Rightarrow\left|1-2a\right|-2a=2a-1-2a=4a-1\)

* \(a\le\dfrac{1}{2}\Rightarrow\left|1-2a\right|-2a=1-2a-2a=1-4a\)

\(b.x-2y-\sqrt{x^2-4xy+4y^2}=x-2y-\sqrt{\left(x-2y\right)^2}=x-2y-\left|x-2y\right|\)

* \(x\ge2y\Rightarrow x-2y-\left|x-2y\right|=x-2y-x+2y=2x\)

* \(x< 2y\Rightarrow x-2y-\left|x-2y\right|=x-2y-2y+x=2x-4y\)

\(c.x^2+\sqrt{x^4-8x^2+16}=x^2+\sqrt{\left(x^2-4\right)^2}=x^2+\left|x^2-4\right|\)

* \(x^2-4\ge0\Rightarrow x^2+\left|x^2-4\right|=x^2+x^2-4=2x^2-4\)

* \(x^2-4< 0\Rightarrow x^2+\left|x^2-4\right|=x^2+4-x^2=4\)

\(d.2x-1-\dfrac{\sqrt{x^2-10x+25}}{x-5}=2x-1-\dfrac{\sqrt{\left(x-5\right)^2}}{x-5}=2x-1-\dfrac{\left|x-5\right|}{x-5}\)

* \(x\ge5\Rightarrow2x-1-\dfrac{\left|x-5\right|}{x-5}=2x-1-1=2x-2\)

* \(x< 5\Rightarrow2x-1-\dfrac{\left|x-5\right|}{x-5}=2x-1+1=2x\)

\(e.\dfrac{\sqrt{x^4-4x^2+4}}{x^2-2}=\dfrac{\sqrt{\left(x^2-2\right)^2}}{x^2-2}=\dfrac{\left|x^2-2\right|}{x^2-2}\)

* \(x^2\ge2\Rightarrow\dfrac{\left|x^2-2\right|}{x^2-2}=1\)

* \(x^2< 2\Rightarrow\dfrac{\left|x^2-2\right|}{x^2-2}=-1\)

\(f.\sqrt{\left(x-4\right)^2}+\dfrac{x-4}{\sqrt{x^2-8x+16}}=\left|x-4\right|+\dfrac{x-4}{\sqrt{\left(x-4\right)^2}}=\left|x-4\right|+\dfrac{x-4}{\left|x-4\right|}\)

* \(x\ge4\Rightarrow\left|x-4\right|+\dfrac{x-4}{\left|x-4\right|}=x-4+\dfrac{x-4}{x-4}=x-5\)

* \(x< 4\Rightarrow\left|x-4\right|+\dfrac{x-4}{\left|x-4\right|}=4-x-1=5-x\)

31 tháng 7 2018

BTVN nhiều nhỉ?

a,A=-1

b,B=2x-4y

c,C=2x^2-4

Bài 1: 

a: \(A=\left|2a-1\right|-2a\)

TH1: a>=1/2

A=2a-1-2a=-1

TH2: a<1/2

A=1-2a-2a=1-4a

b: \(B=x-2y-\left|x-2y\right|\)

TH1: x>=2y

A=x-2y-x+2y=0

TH2: x<2y

A=x-2y+x-2y=2x-4y

c: \(=x^2+\left|x^2-4\right|\)

TH1: x>=2 hoặc x<=-2

\(A=x^2+x^2-4=2x^2-4\)

TH2: -2<x<2

\(A=x^2+4-x^2=4\)

d: \(D=2x-1-\dfrac{\left|x-5\right|}{x-5}\)

TH1: x>5

\(D=2x-1-1=2x-2\)

TH2: x<5

D=2x-1+1=2x

Bài 1: Thực hiện phép tính a) \(\dfrac{1}{2}\sqrt{48}-\sqrt{32}-\sqrt{75}\)\(-\dfrac{1}{5}\sqrt{50}\) b) \(\dfrac{3+\sqrt{3}}{3-\sqrt{3}}+\dfrac{3-\sqrt{3}}{3+\sqrt{3}}\) c) \(4\sqrt{\dfrac{3}{2}}-\dfrac{5}{2}\sqrt{24}+\dfrac{1}{2}\sqrt{50}\) d) \(\left(2\sqrt{5}+5\sqrt{2}\right).\sqrt{5}-\sqrt{250}\) Bài 2: Rút gọn biểu thức sau \(\sqrt{9a}-\sqrt{16a}+\sqrt{49a}\) với \(a\ge0\) Bài 3: Cho biểu thức...
Đọc tiếp

Bài 1: Thực hiện phép tính

a) \(\dfrac{1}{2}\sqrt{48}-\sqrt{32}-\sqrt{75}\)\(-\dfrac{1}{5}\sqrt{50}\)

b) \(\dfrac{3+\sqrt{3}}{3-\sqrt{3}}+\dfrac{3-\sqrt{3}}{3+\sqrt{3}}\)

c) \(4\sqrt{\dfrac{3}{2}}-\dfrac{5}{2}\sqrt{24}+\dfrac{1}{2}\sqrt{50}\)

d) \(\left(2\sqrt{5}+5\sqrt{2}\right).\sqrt{5}-\sqrt{250}\)

Bài 2: Rút gọn biểu thức sau

\(\sqrt{9a}-\sqrt{16a}+\sqrt{49a}\) với \(a\ge0\)

Bài 3: Cho biểu thức sau

A=\(\left(\dfrac{\sqrt{x}}{\sqrt{x}-a}+\dfrac{\sqrt{x}}{\sqrt{x}+2}\right).\dfrac{4-x}{2\sqrt{x}}\)với \(x>0\)\(x\ne4\)

a) Rút gọn A b) Tìm x để A=-3

Bài 4: Rút gọn biểu thức sau

A=\(\left(\dfrac{1}{\sqrt{x}-1}+\dfrac{1}{1+\sqrt{x}}\right):\dfrac{1}{x-1}\) với \(x\ge0\)\(x\ne1\)

Bài 5: Cho biểu thức

C= \(\left(\dfrac{2+\sqrt{a}}{2-\sqrt{a}}-\dfrac{2-\sqrt{a}}{2+\sqrt{a}}-\dfrac{4a}{a-4}\right):\left(\dfrac{2}{2-\sqrt{a}}-\dfrac{\sqrt{a}+3}{2\sqrt{a}-a}\right)\)

a) Rút gọn C b) Timg giá trị của a để C>0 c) Tìm giá trị của a để C=-1

Bài 6: Giải phương trình

a) \(2\sqrt{3}-\sqrt{4+x^2}=0\\\)

b) \(\sqrt{16x+16}-\sqrt{9x+9}=1\)

c) \(3\sqrt{2x}+5\sqrt{8x}-20-\sqrt{18x}=0\)

d) \(\sqrt{4\left(x+2\right)^2}=8\)

1
29 tháng 11 2022

Bài 6:

a: \(\Leftrightarrow\sqrt{x^2+4}=\sqrt{12}\)

=>x^2+4=12

=>x^2=8

=>\(x=\pm2\sqrt{2}\)

b: \(\Leftrightarrow4\sqrt{x+1}-3\sqrt{x+1}=1\)

=>x+1=1

=>x=0

c: \(\Leftrightarrow3\sqrt{2x}+10\sqrt{2x}-3\sqrt{2x}-20=0\)

=>\(\sqrt{2x}=2\)

=>2x=4

=>x=2

d: \(\Leftrightarrow2\left|x+2\right|=8\)

=>x+2=4 hoặcx+2=-4

=>x=-6 hoặc x=2

14 tháng 7 2017

\(a,\sqrt{1-4a+4a^2}-2a\)

\(=\sqrt{\left(1-2a\right)^2}-2a\)

\(=1-2a-2a\)

\(=1-4a\)

\(b,x-2y-\sqrt{x^2-4xy+4y^2}\)

\(=x-2y-\sqrt{\left(x-2y\right)^2}\)

\(=x-2y-\left(x-2y\right)\)

\(=x-2y-x+2y\)

\(=0\)

\(c,x^2+\sqrt{x^4-8x^2+16}\)

\(=x^2+\sqrt{\left(x^2-4\right)^2}\)

\(=x^2+x^2-4\)

\(=2x^2-4\)

Các câu còn lại tương tự nha

14 tháng 7 2017

\(a,\sqrt{1-4a+4a^2}-2a\)

\(=\sqrt{\left(1-2a\right)^2}-2a\)

\(=\left(1-2a\right)-2a\)

\(=1-4a\)

\(b,x-2y-\sqrt{x^2-4xy+4y^2}\)

\(=x-2y-\sqrt{\left(x-2y\right)^2}\)

\(=x-2y-\left(x-2y\right)\)

\(=x-2y-x+2y\)

\(=0\)

\(c,x^2+\sqrt{x^4-8x^2+16}\)

\(=x^2+\sqrt{\left(x^2-2^2\right)^2}\)

\(=x^2+\left(x^2-4\right)\)

\(=x^2+x^2-4\)

\(=2x^2-4\)

\(d,2x-1-\frac{\sqrt{x^2-10x+25}}{x-5}\)

\(=2x-1-\frac{\sqrt{\left(x-5\right)^2}}{x-5}\)

\(=2x-1-\frac{x-5}{x-5}\)

\(=2x-1-1\)

\(=2x-2\)

\(=2\left(x-1\right)\)

19 tháng 8 2017

B1:

a. \(\sqrt{\dfrac{4}{2x+3}}\)được xác định khi:\(\dfrac{4}{2x+3}\ge0\Leftrightarrow2x+3>0\Leftrightarrow x>-\dfrac{3}{2}\)

b.\(\sqrt{x\left(x+2\right)}\text{ }\) được xác định khi :\(x\left(x+2\right)\ge0\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge0\\x+2\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}x\le0\\x+2\le0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\ge0\\x\le-2\end{matrix}\right.\)

c.\(\sqrt{\dfrac{2x-1}{2-x}}\) được xác định khi :\(\dfrac{2x-1}{2-x}\ge0\Leftrightarrow\dfrac{1}{2}\le x< 2\)

B2:

a.\(\sqrt{\left(\sqrt{3}-2\right)^2}=|\sqrt{3}-2|=2-\sqrt{3}\) ( vì \(\sqrt{3}< \sqrt{4}=2\))

b.\(\sqrt{4-2\sqrt{3}}=\sqrt{3-2\sqrt{3}+1}=\sqrt{\left(\sqrt{3}-1\right)^2}=|\sqrt{3}-1|=\sqrt{3}-1\)(vì \(\sqrt{3}>\sqrt{1}=1\))

c.\(\sqrt{9-4\sqrt{5}}=\sqrt{5-4\sqrt{5}+4}=\sqrt{\left(\sqrt{5}-2\right)^2}=|\sqrt{5}-2|=\sqrt{5}-2\)(vì \(\sqrt{5}>\sqrt{4}=2\))

B3:

a.\(\sqrt{25-20x+4x^2}+2x=5\)

\(\Leftrightarrow\sqrt{\left(5-2x\right)^2}+2x=5\)

\(\Leftrightarrow|5-2x|+2x=5\) (1)

Nếu \(5-2x\le0\Leftrightarrow x\ge\dfrac{5}{2}\).Khi đó :

(1)\(\Leftrightarrow2x-5+2x=5\Leftrightarrow4x=10\Leftrightarrow x=\dfrac{5}{2}\)(thoả mãn đk)

Nếu \(5-2x>0\Leftrightarrow x< \dfrac{5}{2}\).Khi đó :

(1)\(\Leftrightarrow5-2x+2x=5\Leftrightarrow5=5\)(luôn đúng với mọi x )

kết hợp với điều kiện ta được :\(x< \dfrac{5}{2}\)

Vậy nghiệm của phương trình đã cho là \(x=\dfrac{5}{2}\) hoặc \(x< \dfrac{5}{2}\)

b.\(\sqrt{x^2+\dfrac{1}{2}x+\dfrac{1}{16}}=\dfrac{1}{4}-x\)

\(\Leftrightarrow\sqrt{\left(x+\dfrac{1}{4}\right)^2}=\dfrac{1}{4}-x\)

\(\Leftrightarrow|x+\dfrac{1}{4}|=\dfrac{1}{4}-x\) (2)

Nếu \(x+\dfrac{1}{4}\le0\Leftrightarrow x\le-\dfrac{1}{4}\).Khi đó :

(2)\(\Leftrightarrow-\left(x+\dfrac{1}{4}\right)=\dfrac{1}{4}-x\Leftrightarrow\dfrac{1}{4}-x=\dfrac{1}{4}-x\) (luôn đúng với mọi x)

kết hợp với điều kiện ta được :\(x\le-\dfrac{1}{4}\)

Nếu \(x+\dfrac{1}{4}>0\Leftrightarrow x>-\dfrac{1}{4}\).Khi đó :

(2)\(\Leftrightarrow x+\dfrac{1}{4}=\dfrac{1}{4}-x\Leftrightarrow2x=0\Leftrightarrow x=0\)(tmđk)

Vậy nghiêm của phương trình là \(x\le-\dfrac{1}{4}\) hoặc \(x=0\)

c.\(\sqrt{x-2\sqrt{x-1}}=2\) (đkxđ :\(x\ge1\))

\(\Leftrightarrow\sqrt{\left(x-1\right)-2\sqrt{x-1}+1}=2\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}-1\right)^2}=2\)

\(\Leftrightarrow|\sqrt{x-1}-1|=2\)

\(\Leftrightarrow\sqrt{x-1}-1=2ho\text{ặc}\sqrt{x-1}-1=-2\)

\(\Leftrightarrow\sqrt{x-1}=3ho\text{ặc}\sqrt{x-1}=-1\)(vô nghiệm )

\(\Leftrightarrow x=10\)(tmđk )

Vậy nghiệm của phương trình đã cho là \(x=10\)

Bài 3:

a: \(=\left(4\sqrt{2}-6\sqrt{2}\right)\cdot\dfrac{\sqrt{2}}{2}=-2\sqrt{2}\cdot\dfrac{\sqrt{2}}{2}=-2\)

b: \(=\dfrac{\sqrt{6}\left(\sqrt{3}-\sqrt{2}\right)}{\sqrt{3}-\sqrt{2}}-2\left(\sqrt{6}-1\right)\)

\(=\sqrt{6}-2\sqrt{6}+2=2-\sqrt{6}\)

AH
Akai Haruma
Giáo viên
27 tháng 10 2018

\(A=\frac{1}{\sqrt{1}-\sqrt{2}}-\frac{1}{\sqrt{2}-\sqrt{3}}+\frac{1}{\sqrt{3}-\sqrt{4}}-....-\frac{1}{\sqrt{24}-\sqrt{25}}\)

\(=\frac{\sqrt{1}+\sqrt{2}}{(\sqrt{1}-\sqrt{2})(\sqrt{1}+\sqrt{2})}-\frac{\sqrt{2}+\sqrt{3}}{(\sqrt{2}-\sqrt{3})(\sqrt{2}+\sqrt{3})}+\frac{\sqrt{3}+\sqrt{4}}{(\sqrt{3}-\sqrt{4})(\sqrt{3}+\sqrt{4})}-...-\frac{\sqrt{24}+\sqrt{25}}{(\sqrt{24}-\sqrt{25})(\sqrt{24}+\sqrt{25})}\)

\(=\frac{\sqrt{1}+\sqrt{2}}{-1}-\frac{\sqrt{2}+\sqrt{3}}{-1}+\frac{\sqrt{3}+\sqrt{4}}{-1}-...-\frac{\sqrt{24}+\sqrt{25}}{-1}\)

\(=\frac{(1+\sqrt{2})-(\sqrt{2}+\sqrt{3})+(\sqrt{3}+\sqrt{4})-...-(\sqrt{24}+\sqrt{25})}{-1}\)

\(=\frac{1-\sqrt{25}}{-1}=4\)

AH
Akai Haruma
Giáo viên
27 tháng 10 2018

\(B=\frac{5}{4+\sqrt{11}}+\frac{11-3\sqrt{11}}{\sqrt{11}-3}-\frac{4}{\sqrt{5}-1}+\sqrt{(\sqrt{5}-2)^2}\)

\(=\frac{5(4-\sqrt{11})}{(4+\sqrt{11})(4-\sqrt{11})}+\frac{\sqrt{11}(\sqrt{11}-3)}{\sqrt{11}-3}-\frac{4(\sqrt{5}+1)}{(\sqrt{5}-1)(\sqrt{5}+1)}+\sqrt{5}-2\)

\(=\frac{5(4-\sqrt{11})}{5}+\sqrt{11}-\frac{4(\sqrt{5}+1)}{4}+\sqrt{5}-2\)

\(=4-\sqrt{11}+\sqrt{11}-(\sqrt{5}+1)+\sqrt{5}-2\)

\(=1\)