Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: \(2\left(x-2\right)^3=2-x\)
\(\Leftrightarrow2\left(x-2\right)^3+x-2=0\)
\(\Leftrightarrow x-2=0\)
hay x=2
b: ta có: \(8x^3-72x=0\)
\(\Leftrightarrow x\left(x-3\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\\x=-3\end{matrix}\right.\)
c: Ta có: \(2x^3+3x^2+2x+3=0\)
\(\Leftrightarrow2x+3=0\)
hay \(x=-\dfrac{3}{2}\)
a) Ta có: \(2-x=2\left(x-2\right)^3\)
\(\Leftrightarrow-\left(x-2\right)-2\left(x-2\right)^3=0\)
\(\Leftrightarrow\left(x-2\right)\left[1+2\left(x-2\right)^2\right]=0\)
\(\Leftrightarrow x-2=0\)
hay x=2
b) Ta có: \(8x^3-72x=0\)
\(\Leftrightarrow8x\left(x^2-9\right)=0\)
\(\Leftrightarrow x\left(x-3\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\\x=-3\end{matrix}\right.\)
Vậy: S={0;3;-3}
c) Ta có: \(\left(x-1.5\right)^6+2\left(1.5-x\right)^2=0\)
\(\Leftrightarrow\left(x-1.5\right)^2\left[\left(x-1.5\right)^4+2\right]=0\)
\(\Leftrightarrow x-1.5=0\)
hay x=1,5
d) Ta có: \(2x^3+3x^2+3+2x=0\)
\(\Leftrightarrow x^2\left(2x+3\right)+\left(2x+3\right)=0\)
\(\Leftrightarrow2x+3=0\)
\(\Leftrightarrow2x=-3\)
hay \(x=-\dfrac{3}{2}\)
e) Ta có: \(x^2\left(x+1\right)-x\left(x+1\right)+x\left(x-1\right)=0\)
\(\Leftrightarrow x\left(x+1\right)\left(x-1\right)+x\left(x-1\right)=0\)
\(\Leftrightarrow x\left(x-1\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-2\end{matrix}\right.\)
Vậy: S={0;1;-2}
f) Ta có: \(x^3-4x-14x\left(x-2\right)=0\)
\(\Leftrightarrow x\left(x-2\right)\left(x+2\right)-14x\left(x-2\right)=0\)
\(\Leftrightarrow x\left(x-2\right)\left(x-12\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x=12\end{matrix}\right.\)
Vậy: S={0;2;12}
Câu 2:
a: \(\left(x-1\right)\left(x+1\right)-x\left(x+3\right)+7=0\)
=>\(x^2-1-x^2-3x+7=0\)
=>-3x+6=0
=>-3x=-6
=>\(x=\dfrac{-6}{-3}=2\)
b: \(2x^3-22x^2+36x=0\)
=>\(2x\left(x^2-11x+18\right)=0\)
=>\(x\left(x^2-11x+18\right)=0\)
=>\(x\left(x^2-2x-9x+18\right)=0\)
=>\(x\left[x\left(x-2\right)-9\left(x-2\right)\right]=0\)
=>\(x\left(x-2\right)\left(x-9\right)=0\)
=>\(\left[{}\begin{matrix}x=0\\x-2=0\\x-9=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x=9\end{matrix}\right.\)
Câu 4:
1: Diện tích cỏ cần thay là:
\(105\cdot68=7140\left(m^2\right)\)
Số tiền BQL sân cần trả là:
\(7140\cdot120000=856800000\left(đồng\right)\)
2:
a: Xét tứ giác ABDC có
M là trung điểm chung của AD và BC
=>ABDC là hình bình hành
Hình bình hành ABDC có \(\widehat{BAC}=90^0\)
nên ABDC là hình chữ nhật
b: Xét ΔADE có
H,M lần lượt là trung điểm của AE,AD
=>HM là đường trung bình của ΔADE
=>HM//DE
=>BC//DE
=>\(\widehat{EDB}=\widehat{DBM}\)(hai góc so le trong)(1)
Ta có: ABDC là hình chữ nhật
=>AD=BC
mà \(MD=\dfrac{AD}{2};MB=\dfrac{BC}{2}\)
nên MD=MB
=>ΔMBD cân tại M
=>\(\widehat{MDB}=\widehat{MBD}\left(2\right)\)
Từ (1) và (2) suy ra \(\widehat{MDB}=\widehat{EDB}\)
=>\(\widehat{ADB}=\widehat{EDB}\)
=>DB là phân giác của góc ADE
Bài 3:
a: \(=\left(2x-5\right)\left(4x^2+10x+25\right)\)
Bài 1:
b: \(3x-6=x^2-16\)
\(\Leftrightarrow x^2-3x-10=0\)
\(\Leftrightarrow\left(x-5\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)
Bài 2:
a: =x(x^2-25)
=x(x-5)(x+5)
b: =x(x-2y)+3(x-2y)
=(x-2y)(x+3)
c: =(2x-3)(4x^2+6x+9)+2x(2x-3)
=(2x-3)(4x^2+8x+9)
2:
a: \(9x^2-1=\left(3x\right)^2-1=\left(3x-1\right)\left(3x+1\right)\)
b: \(2\left(x-1\right)+x^2-x\)
\(=2\left(x-1\right)+x\left(x-1\right)\)
\(=\left(x-1\right)\left(x+2\right)\)
c: \(3x^2+14x-5\)
\(=3x^2+15x-x-5\)
\(=3x\left(x+5\right)-\left(x+5\right)=\left(x+5\right)\left(3x-1\right)\)
3:
a: \(2x\left(x-1\right)-2x^2=4\)
=>\(2x^2-2x-2x^2=4\)
=>-2x=4
=>x=-2
b: \(x\left(x-3\right)-\left(x+2\right)\left(x-1\right)=5\)
=>\(x^2-3x-\left(x^2+x-2\right)=5\)
=>\(x^2-3x-x^2-x+2=5\)
=>-4x=3
=>x=-3/4
c: \(4x^2-25+\left(2x+5\right)^2=0\)
=>\(\left(2x-5\right)\left(2x+5\right)+\left(2x+5\right)^2=0\)
=>\(\left(2x+5\right)\left(2x-5+2x+5\right)=0\)
=>4x(2x+5)=0
=>\(\left[{}\begin{matrix}x=0\\x=-\dfrac{5}{2}\end{matrix}\right.\)
a: \(=x^2\left(2x+3\right)+\left(2x+3\right)\)
\(=\left(2x+3\right)\left(x^2+1\right)\)
b: \(=\left(x-4\right)\left(x+3\right)\)
e: =(x+3)(x-2)
a) \(=x^2\left(2x+3\right)+\left(2x+3\right)=\left(2x+3\right)\left(x^2+1\right)\)
b) \(=x\left(x-4\right)+3\left(x-4\right)=\left(x-4\right)\left(x+3\right)\)
c) \(=\left(2x\right)^2-\left(x^2+1\right)^2=\left(x^2-2x+1\right)\left(x^2+2x+1\right)=\left(x-1\right)^2\left(x+1\right)^2\)
d) \(=4xy\left(y-3x+2\right)\)
e) \(=x\left(x-2\right)+3\left(x-2\right)=\left(x-2\right)\left(x+3\right)\)
f) \(=x\left(x^2+2xy+y^2-4z^2\right)=x\left[\left(x+y\right)^2-4z^2\right]=x\left(x+y-2z\right)\left(x+y+2z\right)\)
g) \(=x\left(x^2-2xy+y^2-25\right)=x\left[\left(x-y\right)^2-25\right]=x\left(x-y-5\right)\left(x-y+5\right)\)
h) \(=x\left(x+1\right)-3\left(x+1\right)=\left(x+1\right)\left(x-3\right)\)
i) \(=x^2\left(x-3\right)-9\left(x-3\right)=\left(x-3\right)\left(x^2-9\right)=\left(x-3\right)^2\left(x+3\right)\)
\(a.3x^2-3y^2-2\left(x-y\right)^2\\ =3\left(x^2-y^2\right)-2\left(x-y\right)^2\\ =3\left(x-y\right)\left(x+y\right)-2\left(x-y\right)^2\\ =\left(x-y\right)\left[3\left(x+y\right)-2.\left(x-y\right)\right]=\left(x-y\right)\left(x+5y\right)\\ b.x^2-y^2-2x-2y\\ =\left(x-y\right)\left(x+y\right)-2\left(x+y\right)\\ =\left(x+y\right)\left(x-y-2\right)\\ c.\left(x-1\right)\left(2x+1\right)+3\left(x-1\right)\left(x+2\right)\left(2x+1\right)\\ =\left(x-1\right)\left(2x+1\right)\left[1+3\left(x+2\right)\right]\\ =\left(x-1\right)\left(2x+1\right)\left(3x+7\right)\\ d.\left(x-5\right)^2+\left(x+5\right)\left(x-5\right)-\left(5-x\right)\left(2x+1\right)\\ =\left(x-5\right)^2+\left(x+5\right)\left(x-5\right)+\left(x-5\right)\left(2x+1\right)\\ =\left(x-5\right)\left[\left(x-5\right)+\left(x+5\right)+\left(2x+1\right)\right]\\ =\left(x-5\right)\left(4x+1\right)\)
Bài 1:
a: \(8x^3-2x=2x\left(4x^2-1\right)=2x\left(2x-1\right)\left(2x+1\right)\)
c: \(-5m^3\left(m+1\right)+m+1=\left(m+1\right)\left(-5m^3+1\right)\)