K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2: \(8xy-24xy+16x\)

\(=8x\cdot y-8x\cdot3y+8x\cdot2\)

\(=8x\left(y-3y+2\right)=8x\left(-2y+2\right)\)

\(=-16y\left(y-1\right)\)

3: \(xy-x=x\cdot y-x\cdot1=x\left(y-1\right)\)

11: \(2mx-4m2xy+6mx\)

\(=2mx-2my\cdot4y+2mx\cdot3\)

\(=2mx\left(1-4y+3\right)\)

\(=2mx\left(4-4y\right)=8mx\left(1-y\right)\)

12: \(7x^2y^5-14x^3y^4-21y^3\)

\(=7y^3\cdot x^2y^2-7y^3\cdot2x^3y-7y^3\cdot3\)

\(=7y^3\left(x^2y^2-2x^3y-3\right)\)

13: \(2\left(x-y\right)-a\left(x-y\right)\)

\(=2\cdot\left(x-y\right)-a\cdot\left(x-y\right)\)

\(=\left(x-y\right)\left(2-a\right)\)

21 tháng 7 2017

a) Ta có : a2x + a2y - 7x - 7y 

= a2(x + y) - (7x + 7y)

= a2(x + y) - 7(x + y)

= (x + y)(a2 - 7)

b) Ta có : x3 + y(1 - 3x2) + x(3x2 - 1) - y3

= x3 - y(3x2 - 1) + x(3x2 - 1) - y

= x3 - y3 + [x(3x2 - 1) - y(3x2 - 1)]

= x3 - y3 - (3x2 - 1)(x - y)

= (x - y)(x2 + xy + y2) - (3x2 - 1)(x - y)

= (x - y)[(x2 + xy + y2) - (3x2 - 1)]

= (x - y)(x2 + xy + y2 - 3x2 + 1)

= (x - y)(-2x2 + xy + y2 + 1)

21 tháng 7 2017

bài 2:a. \(5x.\left(y^2-2yz+z^2\right)\)

\(=5x.\left(y-z\right)^2\) .......k bít dc chưa

b.\(\left(x^2y-x\right)+\left(xy^2-y\right)\)

\(=x.\left(xy-1\right)+y.\left(xy-1\right)\)

\(=\left(xy-1\right).\left(x+y\right)\)

26 tháng 11 2023

x²y + xy² - x - y

= (x²y + xy²) - (x + y)

= xy(x + y) - (x + y)

= (x + y)(xy - 1)

13 tháng 7 2017

a, x2+2x+1+x+1

=(x2+2x+2)+x

=(x2+2x+12)+x

=(x+1)2+x

=(2x+1)2

=(2x-1).(2x+1 )

14 tháng 7 2017

c,xy-y-2x-2

=(xy-2x)-(y-2)

=x.(y-2)-(y-2) 

=(y-2).x

e,xy+xz+y2+yz

=(xy+y2)+(xz+yz)

=y.(x+y)+z.(x+y)

=(x+y).(y+z)

d,x3+x2+x+1

=(x3+x2)+(x+1)

=x2.(x+1)+(x+1)

=x2.(x+1)

b,y2+xy+x+2y+1

=(y2+2y)+(xy+x+1)

=y.(y+2) + x.(y+2)

=(y+2).(y+x)

2 tháng 9 2021

\(\left(xy+1\right)^2-\left(x+y\right)^2=\left(xy+1-x-y\right)\left(xy+1+x+y\right)=\left[x\left(y-1\right)-\left(y-1\right)\right]\left[x\left(y+1\right)+\left(y+1\right)\right]=\left(x-1\right)\left(y-1\right)\left(x+1\right)\left(y+1\right)\)

\(\left(xy+1\right)^2-\left(x+y\right)^2\)

\(=\left(xy-x-y+1\right)\left(xy+1+x+y\right)\)

\(=\left(y-1\right)\left(x-1\right)\left(y+1\right)\left(x+1\right)\)

7 tháng 9 2020


\(a,4\left(2-x\right)^2+xy-2y\)

\(=4\left(2-x\right)^2-y\left(2-x\right)\)

\(=4-y\left(2-x\right)^2\left(2-x\right)\)

\(=\left(2-x\right)\left[\left(2-x\right)4-y\right]\)

\(=\left(2-x\right)\left(4x-8+y\right)\)

\(c,x^3+y^3+z^3-3xyz\)

\(=x^3+y^3+z^3+3x^2y-3x^2y+3xy^2-3xy^2-3xyz\)

\(=\left(x^3+3x^2y+3xy^2+y^3\right)-3x^2y-3xy^2+z^3-3xyz\)

\(=\left(x+y\right)^3-3xy\left(x+1\right)+z^3-3xyz\)

\(=\left[\left(x+y\right)^3+z^3\right]-3xy\left(x+y\right)-3xyz\)

\(=\left[\left(x+y\right)+z\right]\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2\right)-3xy\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-xz-yz\right)\)

7 tháng 9 2020

a) 4(2 - x)2 + xy - 2y = 4(x - 2)2 + y(x - 2) = (4x - 8 + y)(x - 2)

b) 2(x - 1)3 - 5(x - 1)2 - (x - 1) = (x - 1)[2(x - 1)2 - 5(x - 1) - 1]

= (x - 1)(2x2 - 4x + 2 - 5x + 5 - 1) = (x - 1)(2x2 - 9x + 6)

c) x3 + y3 + z3 - 3xyz = (x + y)(x2 - xy + y2) + z3 - 3xyz

= (x + y)3 + z3 - 3xy(x + y) - 3xyz = (x + y + z)(x2 + 2xy + y2 - xz - yz + z2) - 3xy(x + y + z)

= (x + y + z)(x2 + y2 + z2 - xz - yz + 2xy - 3xy) = (x + y + z)(x2 + y2 + z2 - xy - yz - xz)

21 tháng 8 2016

a)A=(x2+2x)+9x2+18x+20

=(x2+2x)+9(x2+2x)+20

Đặt t=x2+2x đc:

t+9t+20=10t+20=10(t+2)

Thay t=x2+2x vào đc:

10(x2+2x+2)

 

21 tháng 8 2016

b sai đề

3 tháng 10 2017

Ta có: ( xy+1)^2 - (x+y)^2

= x^2.y^2 + 2xy + 1^2 - x^2 -2xy - y^2

= x^2. y^2 - x^2 - y^2 +1

= x^2( y^2 - 1) - (y^2 -1)

= (x^2 - 1)(y^2-1)