Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1
Tóm tắt: \(v_A=6\left(\dfrac{m}{s}\right);\\ v_B=8\left(\dfrac{m}{s}\right);\\ s_{AC}=s_{CB}\\ v_{tb}=?\)
Giải:
-Vận tốc trung bình là
ADCT: \(v_{tb}=\dfrac{1}{\dfrac{1}{2}\left(\dfrac{1}{v_A}+\dfrac{1}{v_B}\right)}=\dfrac{1}{\dfrac{1}{2}\left(\dfrac{1}{6}+\dfrac{1}{8}\right)}=\dfrac{48}{7}\approx6,86\left(\dfrac{m}{s}\right)\)
Quãng đường đi được trong 1s cuối
\(\dfrac{1}{2}\cdot a\cdot5^2-\dfrac{1}{2}\cdot a\cdot\left(5-1\right)^2=1,5\Rightarrow a=\dfrac{1}{3}\left(\dfrac{m}{s^2}\right)\)
Vậy gia tốc của vật là 1/3 (m/s^2)
Quãng đường đi dc từ khi hãm phanh đến khi dừng lại
\(s=\dfrac{1}{2}\cdot\dfrac{1}{3}\cdot5^2=\dfrac{25}{6}\left(m\right)\)
<chỗ nào sai chỉ mình hoặc ko hiểu thì bình luận câu trả lời nha>
\(v^2-v^2_0=2as\)
\(\Rightarrow5^2-v^2_0=2a.10\)
\(\Rightarrow25-v^2_0=20a\left(1\right)\)
Lại có: \(10^2-v^2_0=2a.47,5\)
\(\Rightarrow100-^2_0=95a\left(2\right)\)
Từ (1) và (2) ta có hệ : \(\left\{{}\begin{matrix}25-v^2_0=20a\\100-v^2_0=95a\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=1m\text{/ }s^2\\v_0=\sqrt{5m\text{/ }s}\end{matrix}\right.\)
1)
v0=0
Sgiây thứ 3 = 5m \(\Leftrightarrow S_{giâythứ3}=v_0t+\frac{1}{2}at^2-v_0\left(t-1\right)-\frac{1}{2}a\left(t-1\right)^2=v_0+a\left(t-\frac{1}{2}\right)=0+a\left(3-\frac{1}{2}\right)=\frac{5}{2}a\)
=> \(\frac{5}{2}a=5\)
=> a =2\(m/s^2\)
Quãng đường xe đi được sau 10s là:
t =10s => \(s=v_0t+\frac{1}{2}at^2=\frac{1}{2}.2.10^2=100\left(m\right)\)
Gia tốc vật: \(v^2-v_0^2=2aS\)
\(\Rightarrow a=\dfrac{v^2-v_0^2}{2S}=\dfrac{10^2-20^2}{2\cdot37,5}=-4m/s^2\)
a)Vận tốc vật sau khi chuyển động 2s là: \(v=v_0+at=20-4\cdot2=12m/s\)
Quãng đường tàu dịch chuyển trong 2s:
\(S=v_0t+\dfrac{1}{2}at^2=20\cdot2+\dfrac{1}{2}\cdot\left(-4\right)\cdot2=36m\)
b)Vận tốc tàu khi đi được quãng đường 10m là: \(v^2-v_0^2=2aS\)
\(\Rightarrow v=\sqrt{2aS+v_0^2}=\sqrt{2\cdot\left(-4\right)\cdot10+20^2}=8\sqrt{5}m/s\)
c)Nửa quãng đường: \(S'=\dfrac{37,5}{2}=18,75m\)
Vận tốc tàu khi đó: \(v'=\sqrt{2aS'+v_0^2}=\sqrt{2\cdot\left(-4\right)\cdot18,75+20^2}=5\sqrt{10}m/s\)
câu b thay số cthuc bị sai nên kết quả đúng câu b là 32m nhé.
1) \(v^2-v_0^2=2as\)
=> \(5^2-v_0^2=2a.10\)
=> \(25-v_0^2=20a\) (1)
lại có: \(10^2-v_0^2=2a.47,5\)
=> \(100-v^2_0=95a\) (2)
từ (1) và (2) ta có hệ : \(\left\{{}\begin{matrix}25-v_0^2=20a\\100-v_0^2=95a\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=1m/s^2\\v_0=\sqrt{5}m/s\end{matrix}\right.\)