Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3 : Theo bài ra ta có : \(x^2-5x+6=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-2\right)=0\Leftrightarrow x=3;2\)(*)
\(x+\left(x-2\right)\left(2x+1\right)=2\)
\(\Leftrightarrow x-2+\left(x-2\right)\left(2x+1\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(2x+2\right)=0\Leftrightarrow x=2;-1\)(**)
Dựa vào (*) ; (**) dễ dàng chứng minh được a;b nhé
c, Ko vì phương trình (*) ko có nghiệm -1 hay phương trình (**) ko có nghiệm 3 nên 2 phương trình ko tương đương
1
a (9+x)=2 ta có (9+x)= 9+x khi 9+x >_0 hoặc >_ -9
(9+x)= -9-x khi 9+x <0 hoặc x <-9
1)pt 9+x=2 với x >_ -9
<=> x = 2-9
<=> x=-7 thỏa mãn điều kiện (TMDK)
2) pt -9-x=2 với x<-9
<=> -x=2+9
<=> -x=11
x= -11 TMDK
vậy pt có tập nghiệm S={-7;-9}
các cau con lai tu lam riêng nhung cau nhan với số âm thi phan điều kiện đổi chiều nha vd
nhu cau o trên mk lam 9+x>_0 hoặc x>_0
với số âm thi -2x>_0 hoặc x <_ 0 nha
Bài 1:
a) (5x-4)(4x+6)=0
\(\Leftrightarrow\orbr{\begin{cases}5x-4=0\\4x+6=0\end{cases}\Leftrightarrow\orbr{\begin{cases}5x=4\\4x=-6\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{4}{5}\\y=\frac{-3}{2}\end{cases}}}\)
b) (x-5)(3-2x)(3x+4)=0
<=> x-5=0 hoặc 3-2x=0 hoặc 3x+4=0
<=> x=5 hoặc x=\(\frac{3}{2}\)hoặc x=\(\frac{-4}{3}\)
c) (2x+1)(x2+2)=0
=> 2x+1=0 (vì x2+2>0)
=> x=\(\frac{-1}{2}\)
bài 1:
a) (5x - 4)(4x + 6) = 0
<=> 5x - 4 = 0 hoặc 4x + 6 = 0
<=> 5x = 0 + 4 hoặc 4x = 0 - 6
<=> 5x = 4 hoặc 4x = -6
<=> x = 4/5 hoặc x = -6/4 = -3/2
b) (x - 5)(3 - 2x)(3x + 4) = 0
<=> x - 5 = 0 hoặc 3 - 2x = 0 hoặc 3x + 4 = 0
<=> x = 0 + 5 hoặc -2x = 0 - 3 hoặc 3x = 0 - 4
<=> x = 5 hoặc -2x = -3 hoặc 3x = -4
<=> x = 5 hoặc x = 3/2 hoặc x = 4/3
c) (2x + 1)(x^2 + 2) = 0
vì x^2 + 2 > 0 nên:
<=> 2x + 1 = 0
<=> 2x = 0 - 1
<=> 2x = -1
<=> x = -1/2
bài 2:
a) (2x + 7)^2 = 9(x + 2)^2
<=> 4x^2 + 28x + 49 = 9x^2 + 36x + 36
<=> 4x^2 + 28x + 49 - 9x^2 - 36x - 36 = 0
<=> -5x^2 - 8x + 13 = 0
<=> (-5x - 13)(x - 1) = 0
<=> 5x + 13 = 0 hoặc x - 1 = 0
<=> 5x = 0 - 13 hoặc x = 0 + 1
<=> 5x = -13 hoặc x = 1
<=> x = -13/5 hoặc x = 1
b) (x^2 - 1)(x + 2)(x - 3) = (x - 1)(x^2 - 4)(x + 5)
<=> x^4 - x^3 - 7x^2 + x + 6 = x^4 + 4x^3 - 9x^2 - 16x + 20
<=> x^4 - x^3 - 7x^2 + x + 6 - x^4 - 4x^3 + 9x^2 + 16x - 20 = 0
<=> -5x^3 - 2x^2 + 17x - 14 = 0
<=> (-x + 1)(x + 2)(5x - 7) = 0
<=> x - 1 = 0 hoặc x + 2 = 0 hoặc 5x - 7 = 0
<=> x = 0 + 1 hoặc x = 0 - 2 hoặc 5x = 0 + 7
<=> x = 1 hoặc x = -2 hoặc 5x = 7
<=> x = 1 hoặc x = -2 hoặc x = 7/5
Bài 2:
a) Ta có: \(2\left(x+1\right)=3+2x\)
\(\Leftrightarrow2x+2-3-2x=0\)
\(\Leftrightarrow-1< 0\)
Do đó: Phương trình \(2\left(x+1\right)=3+2x\) vô nghiệm
b) Ta có: \(\left|x\right|\ge0\forall x\)
\(\Rightarrow\left|x\right|+1\ge1>0\forall x\)
Do đó: Phương trình |x|+1=0 vô nghiệm
c) Ta có: \(x^2\ge0\forall x\)
\(\Rightarrow x^2+1\ge1>0\forall x\)
Do đó: Phương trình x2+1=0 vô nghiệm
Bài 3:
a) Thay x=-2 vào phương trình \(2x+k=x-1\), ta được
\(2\cdot\left(-2\right)+k=-2-1\)
\(\Leftrightarrow-4+k=-3\)
hay k=1
Vậy: Khi k=1 thì phương trình \(2x+k=x-1\) có nghiệm là x=-2
b) Thay x=2 vào phương trình \(\left(2x+1\right)\left(9x+2k\right)-5\left(x+2\right)=40\), ta được
\(\left(2\cdot2+1\right)\left(9\cdot2+2k\right)-5\left(2+2\right)=40\)
\(\Leftrightarrow5\cdot\left(18+2k\right)-20=40\)
\(\Leftrightarrow5\left(18+2k\right)=60\)
\(\Leftrightarrow18+2k=12\)
\(\Leftrightarrow2k=-6\)
hay k=-3
Vậy: Khi k=-3 thì phương trình \(\left(2x+1\right)\left(9x+2k\right)-5\left(x+2\right)=40\) có nghiệm là x=2
Bài 4:
Ta có: (x-1)(2x-1)=0
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\2x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\2x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\frac{1}{2}\end{matrix}\right.\)
Vậy: Tập nghiệm \(S_1=\left\{1;\frac{1}{2}\right\}\)
Gọi S2 là tập nghiệm của phương trình \(mx^2-\left(m+1\right)x+1=0\)
Để hai phương trình (x-1)(2x-1)=0 và \(mx^2-\left(m+1\right)x+1=0\) là hai phương trình tương đương thì hai phương trình này phải có chung tập nghiệm
⇔S1=S2
hay \(S_2=\left\{1;\frac{1}{2}\right\}\)
Thay x=1 vào phương trình \(mx^2-\left(m+1\right)x+1=0\), ta được
\(m\cdot1^2-\left(m+1\right)\cdot1+1=0\)
\(\Leftrightarrow m-\left(m+1\right)=-1\)
\(\Leftrightarrow m-m-1=-1\)
hay -1=-1
Thay \(x=\frac{1}{2}\) vào phương trình \(mx^2-\left(m+1\right)x+1=0\), ta được
\(m\cdot\left(\frac{1}{2}\right)^2-\left(m+1\right)\cdot\frac{1}{2}+1=0\)
\(\Leftrightarrow\frac{1}{4}m-\left(m+1\right)\cdot\frac{1}{2}=-1\)
\(\Leftrightarrow\frac{1}{4}m-\frac{1}{2}m-\frac{1}{2}=-1\)
\(\Leftrightarrow\frac{-1}{4}m=-\frac{1}{2}\)
hay 1\(m=2\)
Vậy: Khi m=2 thì hai phương trình \(mx^2-\left(m+1\right)x+1=0\) và (x-1)(2x-1)=0 là hai phương trình tương đương
Bài 5:
1:
a) Ta có: 7x+12=0
⇔7x=-12
hay \(x=\frac{-12}{7}\)
Vậy: \(x=\frac{-12}{7}\)
b) Ta có: -2x+14=0
⇔-2x=-14
hay x=7
Vậy: x=7
2)
a) Ta có: 3x+1=7x-11
⇔3x+1-7x+11=0
⇔-4x+12=0
⇔-4x=-12
hay x=3
Vậy: x=3
b) Ta có: 2x+x+12=0
⇔3x+12=0
⇔3x=-12
hay x=-4
Vậy: x=-4
c) Ta có: x-5=3-x
⇔x-5-3+x=0
⇔2x-8=0
⇔2x=8
hay x=4
Vậy: x=4
d) Ta có: 7-3x=9-x
⇔7-3x-9+x=0
⇔-2x-2=0
⇔-2x=2
hay x=-1
Vậy: x=-1
AI GIÚP MÌNH VỚI Ạ MÌNH ĐANG CẦN GẤP