Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1
\(a,2x+6=0\Leftrightarrow2x=-6\Leftrightarrow x=-3\)
\(b,4x+20=0\Leftrightarrow4x=-20\Leftrightarrow x=-5\)
\(c,2\left(x+1\right)-5x-7\Leftrightarrow2x+2-5x-7\Leftrightarrow-3x-5\)
\(d,2x-3=0\Leftrightarrow2x=3\Leftrightarrow x=\frac{3}{2}\)
Tự lm tiếp ...
Bài 2
\(a,\left(x-6\right)\left(x^2-4\right)=0\)
\(\orbr{\begin{cases}x=6\\x=\pm2\end{cases}}\)
\(b,\left(2x+5\right)\left(4x^2-9\right)=0\)
\(\orbr{\begin{cases}2x=-5\\4x^2=9\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-\frac{5}{2}\\x^2=\frac{9}{4}\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-\frac{5}{2}\\x=\pm\frac{3}{2}\end{cases}}}\)
Tự lm tiếp .....
Giải như sau.
(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y
⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn !
\(\left(x+6\right)\left(2x+1\right)=0\)
<=> \(\orbr{\begin{cases}x+6=0\\2x+1=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-6\\x=-\frac{1}{2}\end{cases}}\)
Vậy....
hk tốt
^^
1:
a: 2x-3=5
=>2x=8
=>x=4
b: (x+2)(3x-15)=0
=>(x-5)(x+2)=0
=>x=5 hoặc x=-2
2:
b: 3x-4<5x-6
=>-2x<-2
=>x>1
Bài 2:
(1 + x)3 + (1 - x)3 - 6x(x + 1) = 6
<=> x3 + 3x2 + 3x + 1 - x3 + 3x2 - 3x + 1 - 6x2 - 6x = 6
<=> -6x + 2 = 6
<=> -6x = 6 - 2
<=> -6x = 4
<=> x = -4/6 = -2/3
Bài 3:
a) (7x - 2x)(2x - 1)(x + 3) = 0
<=> 10x3 + 25x2 - 15x = 0
<=> 5x(2x - 1)(x + 3) = 0
<=> 5x = 0 hoặc 2x - 1 = 0 hoặc x + 3 = 0
<=> x = 0 hoặc x = 1/2 hoặc x = -3
b) (4x - 1)(x - 3) - (x - 3)(5x + 2) = 0
<=> 4x2 - 13x + 3 - 5x2 + 13x + 6 = 0
<=> -x2 + 9 = 0
<=> -x2 = -9
<=> x2 = 9
<=> x = +-3
c) (x + 4)(5x + 9) - x2 + 16 = 0
<=> 5x2 + 9x + 20x + 36 - x2 + 16 = 0
<=> 4x2 + 29x + 52 = 0
<=> 4x2 + 13x + 16x + 52 = 0
<=> 4x(x + 4) + 13(x + 4) = 0
<=> (4x + 13)(x + 4) = 0
<=> 4x + 13 = 0 hoặc x + 4 = 0
<=> x = -13/4 hoặc x = -4
1
a (9+x)=2 ta có (9+x)= 9+x khi 9+x >_0 hoặc >_ -9
(9+x)= -9-x khi 9+x <0 hoặc x <-9
1)pt 9+x=2 với x >_ -9
<=> x = 2-9
<=> x=-7 thỏa mãn điều kiện (TMDK)
2) pt -9-x=2 với x<-9
<=> -x=2+9
<=> -x=11
x= -11 TMDK
vậy pt có tập nghiệm S={-7;-9}
các cau con lai tu lam riêng nhung cau nhan với số âm thi phan điều kiện đổi chiều nha vd
nhu cau o trên mk lam 9+x>_0 hoặc x>_0
với số âm thi -2x>_0 hoặc x <_ 0 nha
\(o,x^2-9x+20=0\)
\(\Leftrightarrow x^2-4x-5x+20=0\)
\(\Leftrightarrow x\left(x-4\right)-5\left(x-4\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x-5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-4=0\\x-5=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=4\\x=5\end{cases}}\)
\(n,3x^3-3x^2-6x=0\)
\(\Leftrightarrow3x\left(x^2-x-2\right)=0\)
\(\Leftrightarrow3x\left(x^2+x-2x-2\right)=0\)
\(\Leftrightarrow3x\left[x\left(x+1\right)-2\left(x+1\right)\right]=0\)
\(\Leftrightarrow3x\left(x+1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\orbr{\begin{cases}3x=0\\x+1=0\end{cases}}\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}\orbr{\begin{cases}x=0\\x=-1\end{cases}}\\x=2\end{cases}}\)
Bài 1 : \(a,2x+6=0\)
\(< =>2x=6< =>x=3\)
\(b,4x+20=0\)
\(< =>4x=-20< =>x=-5\)
\(c,3x-1=x+3\)
\(< =>3x-1=3+1=4\)
\(< =>x=\frac{4}{2}=2\)
\(d,3x-2=2x-5\)
\(< =>3x-2x=-5+2=-3\)
\(< =>x=-3\)
\(e,2x-3=0\)\(< =>2x=3< =>x=\frac{3}{2}\)
\(i,2x+3=0< =>2x=-3< =>x=\frac{-3}{2}\)
\(f,2x+1=15-5x\)
\(< =>2x+5x=15-1=14\)
\(< =>x=1\)
\(g,15-7x=9-3x\)
\(< =>15-9=-3x+7x=4x\)
\(< =>x=\frac{6}{4}=\frac{3}{2}\)
\(h,-4x+8=0\)
\(< =>8=4x< =>x=2\)
\(j,2x-2-5x-7=0\)
\(< =>-3x=9< =>x=-3\)
\(k,x-3-18=0\)
\(< =>x=21\)
\(m,4x+5-3x=0\)
\(< =>x=-5\)
Bài 1 : a, \(\left(x-6\right)\left(x^2-4\right)=0\)
\(< = >\orbr{\begin{cases}x-6=0\\x^2-4=0\end{cases}< =>\orbr{\begin{cases}x=6\\x=\pm2\end{cases}}}\)
c,\(4x^2+4x+1=0\)
Ta có : \(\Delta=4^2-4^2=0\)
nên pt có nghiệm kép :
\(x_1=x_2=\frac{1}{4}\)
d,\(\left(x-2\right)^2\left(x-9\right)=0\)
\(< =>\orbr{\begin{cases}x-2=\pm2\\x-9=0\end{cases}}\)
\(< =>\hept{x=4;0;9}\)
e,\(\left(x^2+1\right)\left(x-1\right)=0\)
\(< =>\orbr{\begin{cases}x=-1\\x=1\end{cases}}\)