Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bai 3
\(A=\frac{10^{2004}+1}{10^{2005}+1}\)
\(10A=\frac{10^{2004}+10}{10^{2005}+1}\)
\(10A=1\frac{9}{10^{2005}+1}\)
\(B=\frac{10^{2005}+1}{10^{2006}+1}\)
\(10B=\frac{10^{2005}+10}{10^{2006}+1}\)
\(10B=1\frac{9}{10^{2006}+1}\)
Vì \(1\frac{9}{10^{2005}+1}>1\frac{9}{10^{2006}+1}\)
\(\Rightarrow10A>10B\)
\(\Rightarrow A>B\)
bai 4
\(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+....+\frac{1}{3^8}\)
\(\frac{1}{3}A=\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+....+\frac{1}{3^9}\)
\(A-\frac{1}{3}A=\frac{1}{3}-\frac{1}{3^9}\)
Giả sử có số nguyên n sao cho\(\frac{n+6}{3};\frac{n+5}{3}\) là các số nguyên.
\(\left(n+6\right)\) chia hết cho 3
\(\left(n+5\right)\) chia hết cho 3
Mà n + 6 ; n + 5 là hai số nguyên liên tiếp
\(\Rightarrow\) Không có n thỏa mãn
Vậy không tồn tại các số nguyên n để \(\frac{n+6}{3};\frac{n+5}{3}\) là các số nguyên
không có . giả sử tồn tại số tự nhiên n để hai phân số đã cho nhận giá trị là các số nguyên .thế thì n+6 chia hết cho 3 và n+5 chia hết cho 3 và n+5,n+6 là ha số tự nhiên liên tiếp lêm không có trường hợp như vậy