\(\left(\dfrac{9}{11}-0.81\right)^{2003}=\left(\dfrac{9}{11}\right...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 6 2017

a) Ta có :

\(0,\left(27\right)+0,\left(72\right)==\dfrac{27}{99}+\dfrac{72}{99}=\dfrac{99}{99}=1\)

\(\Rightarrow0,\left(27\right)+0,\left(72\right)=1\rightarrowđpcm\)

b) Ta có :

\(0,\left(22\right).\dfrac{9}{2}=\dfrac{2}{9}.\dfrac{9}{2}=\dfrac{18}{18}=1\)

\(\Rightarrow0,22.\dfrac{9}{2}=1\rightarrowđpcm\)

c) Ta có :

\(\left[0,\left(11\right).9\right]^{2003}=\left[\dfrac{1}{9}.9\right]^{2003}=\left[\dfrac{9}{9}\right]^{2003}=1^{2003}=1\)

\(\Rightarrow\left[0,\left(11\right).9\right]^{2003}=1\rightarrowđpcm\)

24 tháng 6 2017

a) \(0,\left(27\right)+0,\left(72\right)=0,\left(99\right)=1\)

b) \(0,\left(22\right)\cdot\dfrac{9}{2}=\dfrac{2}{9}\cdot\dfrac{9}{2}=1\)

c) \(\left[0,\left(11\right)\cdot9\right]^{2003}=\left(\dfrac{1}{9}\cdot9\right)^{2003}=1^{2003}=1\)

29 tháng 6 2018

câu B là \(2^{12}\) nha mấy bn

17 tháng 8 2017

a. \(\dfrac{\left(x+1\right)}{10}+\dfrac{\left(x+1\right)}{11}+\dfrac{\left(x+1\right)}{12}=\dfrac{x+1}{13}+\dfrac{x+1}{14}\)

\(\dfrac{x+1}{10}+\dfrac{x+1}{11}+\dfrac{x+1}{12}-\dfrac{x+1}{13}-\dfrac{x+1}{14}=0\)

\(\left(x+1\right)\left(\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}-\dfrac{1}{13}-\dfrac{1}{14}\right)=0\)

\(\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}-\dfrac{1}{13}-\dfrac{1}{14}\ne0\)

\(\Rightarrow x+1=0\)

\(x=-1\)

b, \(\dfrac{x+4}{2000}+\dfrac{x+3}{2001}=\dfrac{x+2}{2002}+\dfrac{x+1}{2003}\\ \left(\dfrac{x+4}{2000}+1\right)+\left(\dfrac{x+3}{2001}+1\right)=\left(\dfrac{x+2}{2002}+1\right)+\left(\dfrac{x+1}{2003}+1\right)\\ \dfrac{x+2004}{2000}+\dfrac{x+2004}{2001}-\dfrac{x+2004}{2002}-\dfrac{x+2004}{2003}=0\\ x+2004\left(\dfrac{1}{2000}+\dfrac{1}{2001}-\dfrac{1}{2002}-\dfrac{1}{2003}\right)\)

\(\dfrac{1}{2000}+\dfrac{1}{2001}-\dfrac{1}{2002}-\dfrac{1}{2003}\ne0\\ \Rightarrow x+2004=0\\ x=-2004\)

17 tháng 8 2017

a, \(\dfrac{x+1}{10}+\dfrac{x+1}{11}+\dfrac{x+1}{12}=\dfrac{x+1}{13}+\dfrac{x+1}{14}\)

\(\Rightarrow\dfrac{x+1}{10}+\dfrac{x+1}{11}+\dfrac{x+1}{12}-\dfrac{x+1}{13}-\dfrac{x+1}{14}=0\)

\(\Rightarrow\left(x+1\right)\left(\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}-\dfrac{1}{13}-\dfrac{1}{14}\right)=0\)

\(10< 11< 12< 13< 14\) nên \(\dfrac{1}{10}>\dfrac{1}{11}>\dfrac{1}{12}>\dfrac{1}{13}>\dfrac{1}{14}\)

\(\Rightarrow\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}-\dfrac{1}{13}-\dfrac{1}{14}>0\)

\(\Rightarrow x+1=0\Rightarrow x=-1\)

Vậy.................

b, \(\dfrac{x+4}{2000}+\dfrac{x+3}{2001}=\dfrac{x+2}{2002}+\dfrac{x+1}{2003}\)

\(\Rightarrow\left(\dfrac{x+4}{2000}+1\right)+\left(\dfrac{x+3}{2001}+1\right)=\left(\dfrac{x+2}{2002}+1\right)+\left(\dfrac{x+1}{2003}+1\right)\)

\(\Rightarrow\dfrac{x+2004}{2000}+\dfrac{x+2004}{2001}=\dfrac{x+2004}{2002}+\dfrac{x+2004}{2003}\)

\(\Rightarrow\dfrac{x+2004}{2000}+\dfrac{x+2004}{2001}-\dfrac{x+2004}{2002}-\dfrac{x+2004}{2003}=0\)

\(\Rightarrow\left(x+2004\right)\left(\dfrac{1}{2000}+\dfrac{1}{2001}-\dfrac{1}{2002}-\dfrac{1}{2003}\right)=0\)

\(2000< 2001< 2002< 2003\) nên \(\dfrac{1}{2000}>\dfrac{1}{2001}>\dfrac{1}{2002}>\dfrac{1}{2003}\)

\(\Rightarrow\dfrac{1}{2000}+\dfrac{1}{2001}-\dfrac{1}{2002}-\dfrac{1}{2003}>0\)

\(\Rightarrow x+2004=0\Rightarrow x=-2004\)

Vậy.................

Chúc bạn học tốt!!!

31 tháng 10 2017

Bài 1:

Áp dụng t.c của dãy tỉ số bằng nhau, ta có:

\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a+b+c}{b+c+d}\\ =\left(\dfrac{a+b+c}{b+c+d}\right)^3=\dfrac{a^3}{b^3}=\dfrac{a.b.c}{b.c.d}=\dfrac{a}{d}\left(dpcm\right)\)

1 tháng 11 2017

Thanks nha!!!

26 tháng 7 2018

a. = \(\dfrac{-1}{24}-\left\{\dfrac{1}{4}-\dfrac{-3}{8}\right\}\)

= \(\dfrac{-1}{24}-\left\{\dfrac{1}{4}+\dfrac{3}{8}\right\}\)

= \(\dfrac{-1}{24}-\dfrac{5}{8}\)

= \(\dfrac{-2}{3}\)

b. = \(12\dfrac{7}{88}-3\dfrac{5}{11}\)

= \(8\dfrac{5}{8}\)

c. = \(\dfrac{-28}{9}+\dfrac{-413}{9}\)

= \(-49\)

d. = \(\dfrac{8}{35}:\dfrac{2}{11}+\dfrac{-8}{35}:\dfrac{2}{11}\)

= \(\dfrac{2}{11}:\left(\dfrac{8}{35}+\dfrac{-8}{35}\right)\)

= 0

21 tháng 7 2018

*Trả lời :

a) \(-\dfrac{3}{4}.5\dfrac{3}{13}-0,75.\dfrac{36}{13}\)

= \(-\dfrac{3}{4}.\dfrac{68}{13}-\dfrac{3}{4}.\dfrac{36}{13}\)

=\(\dfrac{3}{4}.\dfrac{-68}{13}-\dfrac{3}{4}.\dfrac{36}{13}\)

=\(\dfrac{3}{4}.\cdot\left(\dfrac{-68}{13}-\dfrac{36}{13}\right)\)

=\(\dfrac{3}{4}.\left(-8\right)\)

= \(-6\)

b)\(4\dfrac{5}{9}:\left(-\dfrac{5}{7}\right)+\dfrac{49}{9}:\left(-\dfrac{5}{7}\right)\)

=\(\dfrac{41}{9}-\left(-\dfrac{5}{7}\right)+\dfrac{49}{9}:\left(-\dfrac{5}{7}\right)\)

=\(\left(\dfrac{41}{9}+\dfrac{49}{9}\right):\left(-\dfrac{5}{7}\right)\)

=\(\dfrac{90}{9}:\left(-\dfrac{5}{7}\right)\)

=\(10:\left(-\dfrac{5}{7}\right)\)

=\(-14\)

c)\(\left(-\dfrac{3}{5}+\dfrac{4}{9}\right):\dfrac{7}{11}+\left(-\dfrac{2}{5}+\dfrac{5}{9}\right):\dfrac{7}{11}\)

=\(\left(-\dfrac{3}{5}\right)+\dfrac{4}{9}:\dfrac{7}{11}+\left(-\dfrac{2}{5}\right)+\dfrac{5}{9}:\dfrac{7}{11}\)(áp dụng tính chất phá ngoặc )

=\(\left\{\left[-\dfrac{3}{5}+\left(-\dfrac{2}{5}\right)\right]+\left(\dfrac{4}{9}+\dfrac{5}{9}\right)\right\}:\dfrac{7}{11}\)

=\(\left(-\dfrac{5}{5}+\dfrac{9}{9}\right):\dfrac{7}{11}\)

=\(\left(-1+1\right):\dfrac{7}{11}\)

\(=0:\dfrac{7}{11}\)

=0.

d)\(\dfrac{6}{7}:\left(\dfrac{3}{26}-\dfrac{3}{13}\right)+\dfrac{6}{7}:\left(\dfrac{1}{10}-\dfrac{8}{5}\right)\)

=\(\dfrac{6}{7}:\left[\dfrac{3}{26}+\left(-\dfrac{6}{26}\right)\right]+\dfrac{6}{7}:\left[\dfrac{1}{10}+\left(-\dfrac{16}{10}\right)\right]\)

=\(\dfrac{6}{7}:\left(-\dfrac{3}{26}\right)+\dfrac{6}{7}:\left(-\dfrac{3}{2}\right)\)

=\(\dfrac{6}{7}:\left[\left(-\dfrac{3}{26}\right)+\left(-\dfrac{39}{26}\right)\right]\)

=\(\dfrac{6}{7}:\left(-\dfrac{21}{13}\right)\)

=\(-\dfrac{26}{49}\)

21 tháng 12 2017

\(\dfrac{4}{9}:\left(\dfrac{-1}{7}\right)+6\dfrac{5}{9}.\left(\dfrac{2}{3}\right)\)

\(=\dfrac{4}{9}.\left(-7\right)+\dfrac{59}{9}.\dfrac{2}{3}\)

\(=\dfrac{2}{9}.\left(-14\right)+\dfrac{2}{9}.\dfrac{59}{3}\)

\(=\dfrac{2}{9}.\left(-14+\dfrac{59}{3}\right)\)

\(=\dfrac{2}{9}.\dfrac{17}{3}\)

\(=\dfrac{34}{27}\)

\(\left(\dfrac{-1}{3}\right)^2.\dfrac{4}{11}+\dfrac{7}{11}.\left(\dfrac{-1}{3}\right)^2\)

\(=\dfrac{1}{9}.\dfrac{4}{11}+\dfrac{7}{11}.\dfrac{1}{9}\)

\(=\dfrac{1}{9}.\left(\dfrac{4}{11}+\dfrac{7}{11}\right)\)

\(=\dfrac{1}{9}.1=\dfrac{1}{9}\)

21 tháng 12 2017

~ \(\dfrac{4}{9}:\left(-\dfrac{1}{7}\right)+6\dfrac{5}{9}.\dfrac{2}{3}\)
\(=\dfrac{4}{9}.\left(-7\right)+\dfrac{59}{9}.\dfrac{2}{3}\)
\(=-\dfrac{28}{9}+\dfrac{118}{27}\)
\(=-\dfrac{84}{27}+\dfrac{118}{27}\)
\(=\dfrac{34}{27}\)
~ \(\left(-\dfrac{1}{3}\right)^2.\dfrac{4}{11}+\dfrac{7}{11}.\left(-\dfrac{1}{3}\right)^2\)
\(=\left(-\dfrac{1}{3}\right)^2.\left(\dfrac{4}{11}+\dfrac{7}{11}\right)\)
\(=\dfrac{1}{9}.\dfrac{11}{11}\)
\(=\dfrac{1}{9}.1\)
\(=\dfrac{1}{9}\)