Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi UCLN(3n+4;n+1) là d
=> 3n+4 ⋮ d
và n+1 ⋮ d
=>3n+4 ⋮ d
3n+3⋮d
=>3n+4-3n-3⋮d
=>1⋮d
=>d=1(n thuộc N)
=> điều phải chứng minh
gọi uoc chung cua 3n + 4 va 4n+5 là x
ta co
3n+4chia het cho x suy ra 12n+16 chia het cho x
4n+5 chia het cho x suy ra 12n+15 chia het cho x
suy ra 12n+16-12n+15=1 chia het cho x suy ra x =1
vay 4n+5 và 3n+4 nguyen to cung nhau
Gọi ƯCLN (3n+4,4n+5) là d ( d thuộc N*)
suy ra 3n+4 chia hết cho d , 4n+5 chia hết cho d.
Xét 3n+4 chia hết cho d
suy ra 4(3n+4) chia hết cho d
hay 12n+16 chia hết cho d (1)
4n+5chia hết cho d
suy ra 3(4n+5) chia hết cho d
hay 12n+15 chia hết cho d (2)
(1),(2) suy ra (12n+16)-(12n+15)chia hết cho d.
1 chia hết cho d
suy ra d=1
suy ra ƯCLN(3n+4,4n+5)=1
Vậy 3n+4,4n+5 là 2 số nguyên tố cùng nhau
b) gọi d = ƯCLN(2n + 3; 3n + 5)
--> 3(2n + 3) và 2(3n + 5) chia hết cho d
--> (6n + 10) - (6n + 9) chia hết cho d
--> 1 chia hết cho d
--> d = 1
--> 2n + 3 và 3n + 5 nguyên tố cùng nhau
a: Vì n+2 và n+3 là hai số tự nhiên liên tiếp
nên n+2 và n+3 là hai số nguyên tố cùng nhau
gọi d là ƯCLN(3n+4;n+1)
=>3n+4 chia hết cho d (1)
=>n+1 chia hết cho d(2)
Từ (1) và (2) xuy ra
(3n+4) -(n+1) chia hết d
=>(3n+4)-3.(n+1)chia hết d
=>(3n+4)-(3n+3) chia hết d
=>3n+4-3n-3 chia hết d
=>1 chia hết d
=> d thuộc Ư(1)={1}
=>d=1
vậy 3n+4 và n+1 là hai số nguyên tố cùng với mọi n thuộc N