K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 7 2016

\(x-\frac{1}{x}=4\Rightarrow\frac{x^2-1}{x}=4\)tới đây bạn thay vào tính là ra nhé

HQ
Hà Quang Minh
Giáo viên
9 tháng 9 2023

a)

\(\begin{array}{l}\frac{2}{{3{\rm{x}}}} + \frac{x}{{x - 1}} + \frac{{6{{\rm{x}}^2} - 4}}{{2{\rm{x}}\left( {1 - x} \right)}}\\ = \frac{2}{{3{\rm{x}}}} - \frac{x}{{1 - x}} + \frac{{6{{\rm{x}}^2} - 4}}{{2{\rm{x}}\left( {1 - x} \right)}}\\ = \frac{{4\left( {1 - x} \right) - 6{{\rm{x}}^2} + 3\left( {6{{\rm{x}}^2} - 4} \right)}}{{6{\rm{x}}\left( {1 - x} \right)}}\\ = \frac{{4 - 4{\rm{x}} - 6{{\rm{x}}^2} + 18{{\rm{x}}^2} - 12}}{{6{\rm{x}}\left( {1 - x} \right)}}\\ = \frac{{12{{\rm{x}}^2} - 4{\rm{x}} - 8}}{{6{\rm{x}}\left( {1 - x} \right)}}\end{array}\)

b)

\(\begin{array}{l}\frac{{{x^3} + 1}}{{1 - {x^3}}} + \frac{x}{{x - 1}} - \frac{{x + 1}}{{{x^2} + x + 1}}\\ = \frac{{ - {x^3} - 1}}{{{x^3} - 1}} + \frac{x}{{x - 1}} - \frac{{x + 1}}{{{x^2} + x + 1}}\\ = \frac{{ - {x^3} - 1 + x\left( {{x^2} + x + 1} \right) - \left( {{x^2} - 1} \right)}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}\\ = \frac{{ - {x^3} - 1 + {x^3} + {x^2} + x - {x^2} + 1}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}\\ = \frac{x}{{{x^3} - 1}}\end{array}\)

c)

 \(\begin{array}{l}\left( {\frac{2}{{x + 2}} - \frac{2}{{1 - x}}} \right).\frac{{{x^2} - 4}}{{4{{\rm{x}}^2} - 1}}\\ = \frac{{2\left( {1 - x} \right) - 2\left( {x + 2} \right)}}{{\left( {x + 2} \right)\left( {1 - x} \right)}}.\frac{{{x^2} - 4}}{{4{{\rm{x}}^2} - 1}}\\ = \frac{{2 - 2{\rm{x}} - 2{\rm{x}} - 4}}{{\left( {x + 2} \right)\left( {1 - x} \right)}}.\frac{{{x^2} - 4}}{{4{{\rm{x}}^2} - 1}}\\ = \frac{{ - 4{\rm{x  -  2}}}}{{\left( {x + 2} \right)\left( {1 - x} \right)}}.\frac{{{x^2} - 4}}{{4{{\rm{x}}^2} - 1}}\\ = \frac{{\left( { - 4{\rm{x}} - 2} \right)\left( {x - 2} \right)\left( {x + 2} \right)}}{{\left( {x + 2} \right)\left( {1 - x} \right)\left( {2{\rm{x}} - 1} \right)\left( {2{\rm{x}} + 1} \right)}}\\ = \frac{{ - 4{{\rm{x}}^2} + 8{\rm{x}} - 2{\rm{x}} + 4}}{{\left( {1 - x} \right)\left( {2{\rm{x}} - 1} \right)\left( {2{\rm{x}} + 1} \right)}}\\ = \frac{{ - 4{{\rm{x}}^2} + 6{\rm{x}} + 4}}{{\left( {1 - x} \right)\left( {4{{\rm{x}}^2} - 1} \right)}}\end{array}\)

 

d)

\(\begin{array}{l}1 + \frac{{{x^3} - x}}{{{x^2} + 1}}\left( {\frac{1}{{1 - x}} - \frac{1}{{1 - {x^2}}}} \right)\\ = 1 + \frac{{{x^3} - x}}{{{x^2} + 1}}\left( {\frac{1}{{1 - x}} - \frac{1}{{1 - {x^2}}}} \right)\\ = 1 + \frac{{{x^3} - x}}{{{x^2} + 1}}.\frac{{1 + x - 1}}{{1 - {x^2}}}\\ = 1 + \frac{{x\left( {{x^2} - 1} \right)}}{{{x^2} + 1}}.\frac{x}{{1 - {x^2}}}\\ = 1 + \frac{{ - {x^2}\left( {{x^2} - 1} \right)}}{{\left( {{x^2} + 1} \right)\left( {{x^2} - 1} \right)}}\\ = 1 + \frac{{ - {x^2}}}{{{x^2} + 1}}\\ = \frac{{{x^2} + 1 - {x^2}}}{{{x^2} + 1}}\\ = \frac{1}{{{x^2} + 1}}\end{array}\)

a:=>x^2-1-x=2x-1

=>x^2-x-1=2x-1

=>x^2-3x=0

=>x=0(loại) hoặc x=3(nhận)

b:=>x+2=0 hoặc 5-3x=0

=>x=-2 hoặc x=5/3

c:=>20(1-2x)+6x=9(x-5)-24

=>20-40x+6x=9x-45-24

=>-34x+20=9x-69

=>-43x=-89

=>x=89/43

d: =>x^2+4x+4-x^2-2x+3=2x^2+8x-4x-16-3

=>2x^2+4x-19=-2x+7

=>2x^2+6x-26=0

=>x^2+3x-13=0

=>\(x=\dfrac{-3\pm\sqrt{61}}{2}\)

e: =>(2x-3)(2x-3-x-1)=0

=>(2x-3)(x-4)=0

=>x=4 hoặc x=3/2

19 tháng 4 2020
https://i.imgur.com/wgXaoMx.jpg
4 tháng 5 2019

b, \(\frac{1}{x-1}-\frac{5}{x-2}=\frac{15}{\left(x+1\right)\left(2-x\right)}\left(ĐKXĐ:x\ne\pm1;x\ne2\right)\)

\(\Leftrightarrow\)\(\frac{1}{x-1}+\frac{5}{2-x}=\frac{15}{\left(x+1\right)\left(2-x\right)}\)

\(\Leftrightarrow\)\(\frac{\left(x+1\right)\left(2-x\right)+5\left(x-1\right)\left(x+1\right)}{\left(x+1\right)\left(2-x\right)\left(x-1\right)}=\frac{15\left(x-1\right)}{\left(x-1\right)\left(x+1\right)\left(2-x\right)}\)

Suy ra:

\(\Leftrightarrow\)(x+1)(2-x)+5(x-1)(x+1) = 15(x-1)

\(\Leftrightarrow\)2x-x2-x+2+5x2-5 = 15x-15

\(\Leftrightarrow\)2x-x2-x+5x2-15x = -15+5-2

\(\Leftrightarrow\)4x2-14x = -12

\(\Leftrightarrow4x^2-14x+12=0\)

\(\Leftrightarrow4x^2-8x-6x+12=0\)

\(\Leftrightarrow\)4x(x-2) - 6(x-2) = 0

\(\Leftrightarrow\left(x-2\right)\left(4x-6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\4x-6=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\left(kotm\right)\\x=\frac{3}{2}\left(tm\right)\end{matrix}\right.\)

Vậy pt có nghiệm duy nhất x = \(\frac{3}{2}\)