Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 1
mình khỏi vẽ hình nha
dễ thấy
\(CH=BH\cdot\dfrac{\sqrt{5}}{\sqrt{7}}\)
mà \(CH+BH=BC=\sqrt{11}\)
\(\Rightarrow\left\{{}\begin{matrix}CH\approx1.519146459\\BH\approx1.797478331\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}AB\approx2.441630847\\AC\approx2.2446467\end{matrix}\right.\)
\(\Rightarrow P_{ABC}\approx8.002902337\)
câu 3
\(B=\dfrac{988153}{30127}=32+\dfrac{1}{\dfrac{30127}{24089}}=32+\dfrac{1}{1+\dfrac{1}{\dfrac{24089}{6038}}}=32+\dfrac{1}{1+\dfrac{1}{3+\dfrac{1}{\dfrac{6038}{5975}}}}=32+\dfrac{1}{1+\dfrac{1}{3+\dfrac{1}{1+\dfrac{1}{\dfrac{5975}{63}}}}}\)
\(B=32+\dfrac{1}{1+\dfrac{1}{3+\dfrac{1}{1+\dfrac{1}{94+\dfrac{1}{\dfrac{63}{53}}}}}}=32+\dfrac{1}{1+\dfrac{1}{3+\dfrac{1}{1+\dfrac{1}{94+\dfrac{1}{1+\dfrac{1}{\dfrac{53}{10}}}}}}}\)
\(B=32+\dfrac{1}{1+\dfrac{1}{3+\dfrac{1}{1+\dfrac{1}{94+\dfrac{1}{1+\dfrac{1}{5+\dfrac{1}{\dfrac{10}{3}}}}}}}}\)
\(B=32+\dfrac{1}{1+\dfrac{1}{3+\dfrac{1}{1+\dfrac{1}{94+\dfrac{1}{1+\dfrac{1}{5+\dfrac{1}{3+\dfrac{1}{3}}}}}}}}\)
vậy \(\left\{b_1;b_2;...;b_n\right\}=\left\{32;1;3;1;94;1;5;3;3\right\}\)
sức mình đến đây thôi
a:ΔAHB vuông tại H
=>\(AH^2+HB^2=AB^2\)
=>\(AH^2+6^2=10^2\)
=>\(AH^2+36=100\)
=>\(AH^2=64\)
=>AH=8(cm)
Xét ΔABC vuông tại A có AH là đường cao
nên \(BH\cdot BC=BA^2\)
=>\(BC\cdot6=10^2=100\)
=>\(BC=\dfrac{100}{6}=\dfrac{50}{3}\left(cm\right)\)
b: Xét tứ giác AMHN có
\(\widehat{AMH}=\widehat{ANH}=\widehat{MAN}=90^0\)
Do đó: AMHN là hình chữ nhật
c: Xét ΔHAB vuông tại H có HM là đường cao
nên \(HM\cdot AB=HA\cdot HB\)
=>\(HM\cdot10=6\cdot8=48\)
=>HM=48/10=4,8(cm)
Xét ΔHAB vuông tại H có HM là đường cao
nên \(AM\cdot AB=AH^2\)
=>\(AM\cdot10=8^2=64\)
=>AM=6,4(cm)
AMHN là hình chữ nhật
=>\(S_{AMHN}=HM\cdot AM=4,8\cdot6,4=30,72\left(cm^2\right)\) và \(C_{AMHN}=\left(HM+AM\right)\cdot2=\left(4,8+6,4\right)\cdot2=22,4\left(cm\right)\)
d: Xét ΔABC vuông tại A có
\(sinC=\dfrac{AB}{BC}\)
=>\(AB=BC\cdot sinC\)
ΔABC vuông tại A
=>\(S_{ABC}=\dfrac{1}{2}\cdot AC\cdot AB=\dfrac{1}{2}\cdot AC\cdot BC\cdot sinC\)
a.
Áp dụng hệ thức lượt trong tam giác vuông ta có:
$\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}$
$\Leftrightarrow \frac{1}{AC^2}=\frac{1}{AH^2}-\frac{1}{AB^2}=\frac{1}{3a^2}$
$\Rightarrow AC=\sqrt{3}a$
$BC=\sqrt{AB^2+AC^2}=\sqrt{a^2+3a^2}=2a$
b.
$HB=\frac{BC}{4}$ thì $HC=\frac{3}{4}BC$
$\Rightarrow \frac{HB}{HC}=\frac{1}{3}$
Áp dụng hệ thức lượt trong tam giác vuông:
$AB^2=BH.BC; AC^2=CH.BC$
$\Rightarrow \frac{AB}{AC}=\sqrt{\frac{BH}{CH}}=\frac{\sqrt{3}}{3}$
Áp dụng định lý Pitago:
$4a^2=BC^2=AB^2+AC^2=(\frac{\sqrt{3}}{3}.AC)^2+AC^2$
$\Rightarrow AC=\sqrt{3}a$
$\Rightarrow AB=a$
c.
Áp dụng hệ thức lượt trong tam giác vuông:
$AB^2=BH.BC$
$\Leftrightarrow AB^2=BH(BH+CH)$
$\Leftrightarrow a^2=BH(BH+\frac{3}{2}a)$
$\Leftrightarrow BH^2+\frac{3}{2}aBH-a^2=0$
$\Leftrightarrow (BH-\frac{a}{2})(BH+2a)=0$
$\Rightarrow BH=\frac{a}{2}$
$BC=BH+CH=2a$
$AC=\sqrt{BC^2-AB^2}=\sqrt{3}a$
d. Tương tự phần a.
4. Dễ thấy \(\Delta AML\approx\Delta LKC\left(g-g\right)\)
\(\Rightarrow\frac{AL}{LC}=\sqrt{\frac{S_{\Delta AML}}{S_{\Delta LKC}}}=\sqrt{\frac{42.7283}{51.4231}}\approx0.9115461896\)
\(\Rightarrow\frac{AL}{AC}=\frac{0.9115461896}{0.9115461896+1}=0.476863282\)
Lại có \(\Delta AML\approx\Delta ABC\left(g-g\right)\)
\(\Rightarrow\frac{S_{AML}}{S_{ABC}}=\left(\frac{AL}{AC}\right)^2=0.476863282^2=0.2273985897\)
\(\Rightarrow S_{\Delta ABC}=\frac{S_{\Delta AML}}{0.2273985897}=\frac{42.7283}{0.2273985897}\approx187.9\left(cm^2\right)\)
1. Ta có \(\frac{BH}{CH}=\frac{\sqrt{7}}{\sqrt{5}}\Rightarrow BH=\frac{\sqrt{7}}{\sqrt{5}}CH\)
Mặt khác \(BC=\sqrt{11}\Rightarrow BH+CH=11\)
\(\Rightarrow\frac{\sqrt{7}}{\sqrt{5}}CH+CH=11\)
\(\Leftrightarrow CH=\frac{-55+11\sqrt{35}}{2}\) và \(BH=\frac{77-11\sqrt{35}}{2}\)
Có BH, CH và BC tính đc AB, AC \(\left(AB=\sqrt{BH.BC};AC=\sqrt{CH.BC}\right)\)
Từ đó tính đc chu vi tam giác ABC.
2. Để cj gửi hình qua gmail cho
3. Chỉ còn cách làm từng bước thôi e
\(B=31+\frac{27}{\frac{30127}{2008}}=31+\frac{54216}{30127}=32+\frac{24089}{30127}\)
Để viết liên phân số, ta bấm phím tìm thương và số dư:
(Mỗi số b1, b2, b3, ..., bn-1 chính là thương; số chia của phép chia trước là số bị chia của phép chia sau, còn số dư của phép chia trước là số chia của phép chia sau, nhớ nhá)
- B1: Tìm thương và số dư của 30127 cho 24089, thương là 1, dư 6038, viết \(B=32+\frac{1}{1+...}\)
- B2: Tìm thương và số dư của 24089 cho 6038, thương là 3, dư 5975, viết \(B=32+\frac{1}{1+\frac{1}{3+...}}\)
- B3: Tìm thương và số dư của 6038 cho 5975, thương là 1, dư 63, viết \(B=32+\frac{1}{1+\frac{1}{3+\frac{1}{1+...}}}\)
- B4: Tìm thương và số dư của 5975 cho 63, thương là 94, dư 53, viết \(B=32+\frac{1}{1+\frac{1}{3+\frac{1}{1+\frac{1}{94+...}}}}\)
...
Cứ làm như vậy, đến khi số dư là 1 thì dừng lại, phân số cuối cùng \(\frac{1}{b_n}\) thì bn chính là số chia cuối cùng, bn = 3
Kết quả: \(B=32+\frac{1}{1+\frac{1}{3+\frac{1}{1+\frac{1}{94+\frac{1}{1+\frac{1}{5+\frac{1}{3+\frac{1}{3}}}}}}}}\)