Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Có \(2\overrightarrow{EF}=\overrightarrow{ED}+\overrightarrow{EC}\)
Lại có : \(\left\{{}\begin{matrix}\overrightarrow{AD}=\overrightarrow{AE}+\overrightarrow{ED}\\\overrightarrow{BC}=\overrightarrow{BE}+\overrightarrow{EC}\end{matrix}\right.\rightarrow\overrightarrow{AD}+\overrightarrow{BC}=\left(\overrightarrow{AE}+\overrightarrow{BE}\right)+\overrightarrow{ED}+\overrightarrow{EC}=\overrightarrow{0}+\overrightarrow{ED}+\overrightarrow{EC}=\overrightarrow{ED}+\overrightarrow{EC}\) Do đó : \(2\overrightarrow{EF}=\overrightarrow{AD}+\overrightarrow{BC}\left(=\overrightarrow{ED}+\overrightarrow{EC}\right)\)
2) Có : \(\left\{{}\begin{matrix}\overrightarrow{OA}+\overrightarrow{OB}=2\overrightarrow{OE}\left(1\right)\\\overrightarrow{OC}+\overrightarrow{OD}=2\overrightarrow{OF}=-2\overrightarrow{OE}\left(2\right)\end{matrix}\right.\)
(1) + (2) => \(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OD}=2\overrightarrow{OE}+2\overrightarrow{OF}=2\overrightarrow{OE}-2\overrightarrow{OE}=\overrightarrow{0}\)
3) \(\left(\overrightarrow{AB}+\overrightarrow{AD}\right)+\overrightarrow{AC}=2\overrightarrow{AC}=4\overrightarrow{AO}\)
4) Ta có : \(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}+\overrightarrow{MD}=\left(\overrightarrow{MO}+\overrightarrow{OA}\right)+\left(\overrightarrow{MO}+\overrightarrow{OB}\right)+\left(\overrightarrow{MO}+\overrightarrow{OC}\right)+\left(\overrightarrow{MO}+\overrightarrow{OD}\right)=4\overrightarrow{MO}+\left(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OD}\right)=4\overrightarrow{MO}+\overrightarrow{0}=4\overrightarrow{MO}\)
Em ms hok cái này nên ko chắc lăm ạ :D
Theo quy tắc 3 điểm\(\Rightarrow\overrightarrow{AB}+\overrightarrow{AC}=\overrightarrow{BC}\)
\(\overrightarrow{AM}+\overrightarrow{AN}=\overrightarrow{MN}\)
Có I là TĐ của BC\(\Rightarrow\overrightarrow{EB}+\overrightarrow{EC}=\overrightarrow{BC}=0\) (1)
Có I là TĐ của MN \(\Rightarrow\overrightarrow{EM}+\overrightarrow{EN}=\overrightarrow{MN}=0\) (2)
Từ (1) và (2)\(\Rightarrowđpcm\)
a: vecto MN=vecto MC+vecto CA+vecto AN
=vecto CA+4 vecto BC+3/4 vecto AB
=vecto CA+4(vecto BA+vecto AC)+3/4vecto AB
=vecto CA-4vecto AB-4vecto CA+3/4vecto AB
=-3 vecto CA-13/4vecto AB
=-13/4vecto AB+3 vecto AC
=>-13/4 vecto AB=vecto MN-3 vecto AC
=>vecto AB=-4/13 vecto MN+12/13 vecto AC
b: vecto AE=vecto AN+vecto NE
=3/4vecto AB+1/2vecto NM
=3/4vecto AB-1/2 vecto MN
=3/4*vecto AB-1/2(-13/4vecto AB+3vecto AC)
=3/4*vecto AB+13/8vecto AB-3/2vecto AC
=19/8vecto AB-3/2vecto AC
Lời giải:
$E$ là trung điểm $BC$ nên:
$\overrightarrow{BE}+\overrightarrow{CE}=\overrightarrow{0}$ (2 vecto đối nhau)
$E$ là trung điểm của $MN$ nên:
$\overrightarrow{ME}+\overrightarrow{NE}=\overrightarrow{0}$
(hai vecto đối nhau)
Từ đây ta có:
$\overrightarrow{AB}+\overrightarrow{AC}=(\overrightarrow{AB}+\overrightarrow{BE})+(\overrightarrow{AC}+\overrightarrow{CE})=\overrightarrow{AE}+\overrightarrow{AE}$
$=\overrightarrow{AM}+\overrightarrow{ME}+\overrightarrow{AN}+\overrightarrow{NE}$
$=\overrightarrow{AM}+\overrightarrow{AN}+(\overrightarrow{ME}+\overrightarrow{NE})$
$=\overrightarrow{AM}+\overrightarrow{AN}$
Ta có đpcm.
a/ \(\left\{{}\begin{matrix}\overrightarrow{AB}+\overrightarrow{AC}=2\overrightarrow{AE}\\\overrightarrow{AM}+\overrightarrow{AN}=2\overrightarrow{AE}\end{matrix}\right.\) \(\Rightarrow\overrightarrow{AB}+\overrightarrow{AC}=\overrightarrow{AM}+\overrightarrow{AN}\)
b/ \(2\overrightarrow{IA}+\overrightarrow{IB}+\overrightarrow{IC}=2\overrightarrow{IA}+2\overrightarrow{IE}=2\left(\overrightarrow{IA}+\overrightarrow{IE}\right)=2\overrightarrow{0}=\overrightarrow{0}\)
c/ \(2\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}=2\left(\overrightarrow{OI}+\overrightarrow{IA}\right)+\overrightarrow{OI}+\overrightarrow{IB}+\overrightarrow{OI}+\overrightarrow{IC}\)
\(=\left(2\overrightarrow{IA}+\overrightarrow{IB}+\overrightarrow{IC}\right)+4\overrightarrow{OI}=\overrightarrow{0}+4\overrightarrow{OI}=4\overrightarrow{OI}\)