K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 2 2022

a)  ΔABC có 2 đường trung tuyến BD; CE
G là trọng tâm
=> BG/BD = 2/3
     CG/CE = 2/3
b) Trong tam giác BGC ta có: BG + GC > BC
=>   2/3DB + 2/3CE > BC (G là trọng tâm)
=>   2/3(DB + CE) > BC
=> 3/2. 2/3 (DB+CE)> 3/2BC
=>  (DB + CE)>3/2BC

DG+EG=1/3BD+1/3CE=2/3BD=BG>1/2BC

a: G là trọng tâm

=>BG=2/3BD; CG=2/3CE
=>BG=CG

=>DG=GE

b: Xet ΔEBC và ΔDCB có

BC chung

góc ECB=góc DBC

EC=BD

=>ΔEBC=ΔDCB

=>góc ABC=góc ACB

=>ΔACB cân tại A

30 tháng 9 2017

2 tháng 7 2019

Gọi G là giao điểm của BD và CE.

Trong ∆GBC, ta có:

GB + GC > BC (bất đẳng thức tam giác)

GB = 2/3 BD (tính chất đường trung tuyến)

GC = 2/3 CE (tính chất đường trung tuyến)

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

Mà BC = 10 cm (gt)

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

⇒ BD + CE > 15 (cm).

31 tháng 3 2017

Gọi giao điểm của BD và CE là G.

\(\Rightarrow\hept{\begin{cases}BD=\frac{3}{2}BG\\CE=\frac{3}{2}CG\end{cases}}\)

\(\Rightarrow BD+CE=\frac{3}{2}\left(BG+CG\right)\)

Xét tam giác BGC có BG + CG > BC ( bất đẳng thức trong tam giác)

\(\Rightarrow BD+CE>\frac{3}{2}BC\)