K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Gọi D là giao điểm của BM và AC

Gọi E là giao điểm của CM và AB

Do đó: CE⊥AB và BD⊥AC

Ta có: ΔEMB vuông tại E(CE⊥AB)

nên \(\widehat{EMB}+\widehat{EBM}=90^0\)(hai góc phụ nhau)(1)

Ta có: ΔDMC vuông tại D(BD⊥AC)

nên \(\widehat{DMC}+\widehat{DCM}=90^0\)(hai góc phụ nhau)(2)

\(\widehat{EMB}=\widehat{DMC}\)(hai góc đối đỉnh)(3)

nên \(\widehat{EBM}=\widehat{DCM}\)

hay \(\widehat{ABD}=\widehat{ACE}\)

Ta có: \(\widehat{ABD}+\widehat{CBD}=\widehat{ABC}\)(tia BD nằm giữa hai tia BA,BC)

\(\widehat{ACE}+\widehat{BCE}=\widehat{ACB}\)(tia CE nằm giữa hai tia CA,CB)

\(\widehat{ABC}=\widehat{ACD}\)(hai góc ở đáy của ΔABC cân tại A)

\(\widehat{ABD}=\widehat{ACE}\)(cmt)

nên \(\widehat{DBC}=\widehat{ECB}\)

hay \(\widehat{MBC}=\widehat{MCB}\)

Xét ΔMBC có \(\widehat{MBC}=\widehat{MCB}\)(cmt)

nên ΔMBC cân tại M(định lí đảo của tam giác cân)

⇒MB=MC

Xét ΔEMB vuông tại E và ΔDMC vuông tại D có

MB=MC(cmt)

\(\widehat{EMB}=\widehat{DMC}\)(hai góc đối đỉnh)

Do đó: ΔEMB=ΔDMC(cạnh huyền-góc nhọn)

⇒EM=MD(hai cạnh tương ứng)

Xét ΔAEM vuông tại E và ΔADM vuông tại D có

AM là cạnh chung

EM=MD(cmt)

Do đó: ΔAEM=ΔADM(cạnh huyền-cạnh góc vuông)

\(\widehat{EAM}=\widehat{DAM}\)(hai góc tương ứng)

hay \(\widehat{BAM}=\widehat{CAM}\)

mà tia AM nằm giữa hai tia AB, AC

nên AM là tia phân giác của \(\widehat{BAC}\)(đpcm)

b) Ta có: AB=AC(ΔABC cân tại A)

nên A nằm trên đường trung trực của BC(tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: MB=MC(cmt)

nên M nằm trên đường trung trực của BC(tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra AM là đường trung trực của BC

hay AM⊥BC(đpcm)

24 tháng 3 2020

B C A M H K 1 2

a, - Gọi châm đường vuông góc kẻ từ B, C tới AC, AB lần lượt là H, K .

- Ta có : Tam giác ABC cân tại A .

=> AB = AC ( tính chất tam giác cân )

- Xét \(\Delta ABH\)\(\Delta ACK\) có :

\(\left\{{}\begin{matrix}\widehat{BAC}\left(chung\right)\\AB=AC\left(cmt\right)\\\widehat{AHB}=\widehat{AKC}\left(=90^o\right)\end{matrix}\right.\)

=> \(\Delta ABH\) = \(\Delta ACK\) ( Ch - gn )

- Xét \(\Delta ABM\)\(\Delta ACM\) có :

\(\left\{{}\begin{matrix}AB=AC\left(cmt\right)\\\widehat{ABM}=\widehat{ACM}\left(cmt\right)\\AM=AM\end{matrix}\right.\)

=> \(\Delta ABM\) = \(\Delta ACM\) ( c - g - c )

=> \(\widehat{A_1}=\widehat{A_2}\) ( góc tương ứng )

=> AM là tia phân giác của góc A . ( đpcm )

b, - Xét tam giác ABC cân tại A có :

+, AM là tia phân giác của góc A ( câu a )

=> AM là đường trung trực .

=> AM là đường cao .

=> AM vuông góc với BC ( đpcm )

19 tháng 2 2020

P/S 3 chữ hoa liên tiếp ko có dấu hiệu j cả thì đó là góc nhé

a,Gọi đường thẳng vuông góc vs AB,AC lần lượt cắt AB,AC tại O,H

Xét \(\Delta vuongAOC\)\(\Delta vuongAHB\)

\(AB=AC\left(gt\right)\\ OAH\left(gocchung\right)\)

\(=>\Delta AOC=\Delta AHB\left(ch-gn\right)\)

\(=>AO=AH\left(canh.tuong.ung\right)\)

Xét tam giác vuông AOM và tam giác vuông AHM 

AM cạnh chung

AO=AH (cmt)

=>Tam giác AOM=tam giác AHM (ch-cgv)

=>OAM = HAM (góc tương ứng)

=>AM là tia p/g của góc A

b,Gọi AM cắt BC tại K

Xét \(\Delta BAKva\Delta CAK\)

\(AKcanh.chung\\ AB=AC\left(gt\right)\\ BAK=CAK\left(cm.cau.a\right)\)

\(=>\Delta BAK=\Delta CAK\left(c-g-c\right)\)

\(=>BKA=CKA\left(goc.tuong.ung\right)\)

Do\(BAK+CAK=180^0=BKC\left(goc.bet\right)\)

\(=>BAK=CAK=\frac{180}{2}=90\)

\(=>AK\perp BC\)hay \(AM\perp BC\)

Ko hiểu thì ib mk chỉ :D

25 tháng 1 2019

a, xét tam giác ABE và tam giác ACD có:

AC=AB(gt)

góc A chung

góc ABE = góc ACD( do ABC= góc ACB, tia p/giác)

suy ra tam giác ABE= tam giác ACD(g.c.g)

suy ra BE=CD, AE=AD(đpcm)

9 tháng 5 2017

A E B C F I M D

a) Xét tam giác BEM và tam giácCFM

có:BM=MC(gt)

     góc EBM=gócFCM(tam giác ABC can^)
->T/g BEM=t/g CFM(c.huyền g. nhon)

b)

Xét tam giác vg AEM va t/g vg AFM

có:EM=MF(t/g BEM=t/gAFM)

    AM là cạnh chung

->t/g AEM =t/g AFM( c/ huyền -c.góc vg)

->AE=AF(2 cạnh tương ứng)

Xét tam giác AEI và t/g AFI 

có:MF=EM(t/g BEM= t/g CFM)

    AM là cạnh chung

    AF=AE(C/ m trên)

->t/g AEI =t/g AFI(c-c-c)

->EI = IF(2 cạnh tương ứng)

->góc AIE= góc AIF(2 tương ứng)

=>AE là đường trung trực của EF

c(mik ko pt lm) 

3 tháng 5 2018

a và b bạn Hương Sơn 

c) Ta có: 

\(\Delta ABC\)cân

có AM là đường trung tuyến 

=> AM cũng  là đường trung trực

=> \(AM\perp BC\)

=> AM = 90 độ

Vì \(\Delta ABC\)cân 

=> Góc ABM = góc ACM          (1)

mà Góc ABD = góc ACD = 90 độ            (2)

Từ (1) và (2) => Góc MBD = góc MCD 

Xét \(\Delta DMB\)và \(\Delta DMC\)có :

DM : cạnh chung     (1)

Góc MBD = góc MCD ( chứng minh trên )            (2)

BM = MC ( vì AM là đường trung tuyến của tam giác ABC )                  (3)

Từ (1) ; (2) và (3) => \(\Delta DMB=\Delta DMC\)(cạnh - góc - cạnh)

=> Góc CMD = góc BMD ( cặp góc tương ứng)

Mà Góc CMD + góc BMD = 180 độ

=> Góc CMD = BMD = 180 : 2 = 90 độ

Vì Góc AMC = 90 độ ( vì AM là đường trung trực)

và  góc CMD = 90 độ

=> AMC + CMD = AMD

=> 90 + 90 = AMD 

=> AMD = 180 độ

=>   Ba điểm A ; M ; D thẳng hàng. ( điều phải chứng minh)

Chúc bạn học tốt !