Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
P/S 3 chữ hoa liên tiếp ko có dấu hiệu j cả thì đó là góc nhé
a,Gọi đường thẳng vuông góc vs AB,AC lần lượt cắt AB,AC tại O,H
Xét \(\Delta vuongAOC\)và\(\Delta vuongAHB\)
\(AB=AC\left(gt\right)\\ OAH\left(gocchung\right)\)
\(=>\Delta AOC=\Delta AHB\left(ch-gn\right)\)
\(=>AO=AH\left(canh.tuong.ung\right)\)
Xét tam giác vuông AOM và tam giác vuông AHM
AM cạnh chung
AO=AH (cmt)
=>Tam giác AOM=tam giác AHM (ch-cgv)
=>OAM = HAM (góc tương ứng)
=>AM là tia p/g của góc A
b,Gọi AM cắt BC tại K
Xét \(\Delta BAKva\Delta CAK\)
\(AKcanh.chung\\ AB=AC\left(gt\right)\\ BAK=CAK\left(cm.cau.a\right)\)
\(=>\Delta BAK=\Delta CAK\left(c-g-c\right)\)
\(=>BKA=CKA\left(goc.tuong.ung\right)\)
Do\(BAK+CAK=180^0=BKC\left(goc.bet\right)\)
\(=>BAK=CAK=\frac{180}{2}=90\)
\(=>AK\perp BC\)hay \(AM\perp BC\)
Ko hiểu thì ib mk chỉ :D
a, xét tam giác ABE và tam giác ACD có:
AC=AB(gt)
góc A chung
góc ABE = góc ACD( do ABC= góc ACB, tia p/giác)
suy ra tam giác ABE= tam giác ACD(g.c.g)
suy ra BE=CD, AE=AD(đpcm)
A E B C F I M D
a) Xét tam giác BEM và tam giácCFM
có:BM=MC(gt)
góc EBM=gócFCM(tam giác ABC can^)
->T/g BEM=t/g CFM(c.huyền g. nhon)
b)
Xét tam giác vg AEM va t/g vg AFM
có:EM=MF(t/g BEM=t/gAFM)
AM là cạnh chung
->t/g AEM =t/g AFM( c/ huyền -c.góc vg)
->AE=AF(2 cạnh tương ứng)
Xét tam giác AEI và t/g AFI
có:MF=EM(t/g BEM= t/g CFM)
AM là cạnh chung
AF=AE(C/ m trên)
->t/g AEI =t/g AFI(c-c-c)
->EI = IF(2 cạnh tương ứng)
->góc AIE= góc AIF(2 tương ứng)
=>AE là đường trung trực của EF
c(mik ko pt lm)
a và b bạn Hương Sơn
c) Ta có:
\(\Delta ABC\)cân
có AM là đường trung tuyến
=> AM cũng là đường trung trực
=> \(AM\perp BC\)
=> AM = 90 độ
Vì \(\Delta ABC\)cân
=> Góc ABM = góc ACM (1)
mà Góc ABD = góc ACD = 90 độ (2)
Từ (1) và (2) => Góc MBD = góc MCD
Xét \(\Delta DMB\)và \(\Delta DMC\)có :
DM : cạnh chung (1)
Góc MBD = góc MCD ( chứng minh trên ) (2)
BM = MC ( vì AM là đường trung tuyến của tam giác ABC ) (3)
Từ (1) ; (2) và (3) => \(\Delta DMB=\Delta DMC\)(cạnh - góc - cạnh)
=> Góc CMD = góc BMD ( cặp góc tương ứng)
Mà Góc CMD + góc BMD = 180 độ
=> Góc CMD = BMD = 180 : 2 = 90 độ
Vì Góc AMC = 90 độ ( vì AM là đường trung trực)
và góc CMD = 90 độ
=> AMC + CMD = AMD
=> 90 + 90 = AMD
=> AMD = 180 độ
=> Ba điểm A ; M ; D thẳng hàng. ( điều phải chứng minh)
Chúc bạn học tốt !
a) Gọi D là giao điểm của BM và AC
Gọi E là giao điểm của CM và AB
Do đó: CE⊥AB và BD⊥AC
Ta có: ΔEMB vuông tại E(CE⊥AB)
nên \(\widehat{EMB}+\widehat{EBM}=90^0\)(hai góc phụ nhau)(1)
Ta có: ΔDMC vuông tại D(BD⊥AC)
nên \(\widehat{DMC}+\widehat{DCM}=90^0\)(hai góc phụ nhau)(2)
mà \(\widehat{EMB}=\widehat{DMC}\)(hai góc đối đỉnh)(3)
nên \(\widehat{EBM}=\widehat{DCM}\)
hay \(\widehat{ABD}=\widehat{ACE}\)
Ta có: \(\widehat{ABD}+\widehat{CBD}=\widehat{ABC}\)(tia BD nằm giữa hai tia BA,BC)
\(\widehat{ACE}+\widehat{BCE}=\widehat{ACB}\)(tia CE nằm giữa hai tia CA,CB)
mà \(\widehat{ABC}=\widehat{ACD}\)(hai góc ở đáy của ΔABC cân tại A)
và \(\widehat{ABD}=\widehat{ACE}\)(cmt)
nên \(\widehat{DBC}=\widehat{ECB}\)
hay \(\widehat{MBC}=\widehat{MCB}\)
Xét ΔMBC có \(\widehat{MBC}=\widehat{MCB}\)(cmt)
nên ΔMBC cân tại M(định lí đảo của tam giác cân)
⇒MB=MC
Xét ΔEMB vuông tại E và ΔDMC vuông tại D có
MB=MC(cmt)
\(\widehat{EMB}=\widehat{DMC}\)(hai góc đối đỉnh)
Do đó: ΔEMB=ΔDMC(cạnh huyền-góc nhọn)
⇒EM=MD(hai cạnh tương ứng)
Xét ΔAEM vuông tại E và ΔADM vuông tại D có
AM là cạnh chung
EM=MD(cmt)
Do đó: ΔAEM=ΔADM(cạnh huyền-cạnh góc vuông)
⇒\(\widehat{EAM}=\widehat{DAM}\)(hai góc tương ứng)
hay \(\widehat{BAM}=\widehat{CAM}\)
mà tia AM nằm giữa hai tia AB, AC
nên AM là tia phân giác của \(\widehat{BAC}\)(đpcm)
b) Ta có: AB=AC(ΔABC cân tại A)
nên A nằm trên đường trung trực của BC(tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: MB=MC(cmt)
nên M nằm trên đường trung trực của BC(tính chất đường trung trực của một đoạn thẳng)(2)
Từ (1) và (2) suy ra AM là đường trung trực của BC
hay AM⊥BC(đpcm)
B C A M H K 1 2
a, - Gọi châm đường vuông góc kẻ từ B, C tới AC, AB lần lượt là H, K .
- Ta có : Tam giác ABC cân tại A .
=> AB = AC ( tính chất tam giác cân )
- Xét \(\Delta ABH\) và \(\Delta ACK\) có :
\(\left\{{}\begin{matrix}\widehat{BAC}\left(chung\right)\\AB=AC\left(cmt\right)\\\widehat{AHB}=\widehat{AKC}\left(=90^o\right)\end{matrix}\right.\)
=> \(\Delta ABH\) = \(\Delta ACK\) ( Ch - gn )
- Xét \(\Delta ABM\) và \(\Delta ACM\) có :
\(\left\{{}\begin{matrix}AB=AC\left(cmt\right)\\\widehat{ABM}=\widehat{ACM}\left(cmt\right)\\AM=AM\end{matrix}\right.\)
=> \(\Delta ABM\) = \(\Delta ACM\) ( c - g - c )
=> \(\widehat{A_1}=\widehat{A_2}\) ( góc tương ứng )
=> AM là tia phân giác của góc A . ( đpcm )
b, - Xét tam giác ABC cân tại A có :
+, AM là tia phân giác của góc A ( câu a )
=> AM là đường trung trực .
=> AM là đường cao .
=> AM vuông góc với BC ( đpcm )