K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 7 2017

sửa đề : \(\frac{9}{10!}+\frac{10}{11!}+\frac{11}{12!}+...+\frac{99}{100!}\)

\(=\frac{10-1}{10!}+\frac{11-1}{11!}+\frac{12-1}{12!}+...+\frac{100-1}{100!}\)

\(=\frac{1}{9!}-\frac{1}{10!}+\frac{1}{10!}-\frac{1}{11!}+\frac{1}{11!}-\frac{1}{12!}+...+\frac{1}{99!}-\frac{1}{100!}\)

\(=\frac{1}{9!}-\frac{1}{100!}< \frac{1}{9!}\left(đpcm\right)\)

4 tháng 4 2016

4S = 4/(5x5) + 4/(9x9) + … + 1/(409x409)

Ta thấy:

4/(5x5) < 4/(3x7) = 1/3 – 1/7

4/(9x9) < 4/(7x11) = 1/7 – 1/11

…………

4/(409x409) < 4/(407x411) = 1/407 – 1/411

Mà :

4/(3x7) + 4/(7x11) + …. + 4/(407x411) = 1/3 – 1/411 = 136/411

4S < 136/411

S < 34/411 < 34/408 = 1/12

Hay  S < 1/12

29 tháng 1 2016

ai kết bạn không

7 tháng 3 2018

Ta có : 

\(B=\frac{9}{10!}+\frac{9}{11!}+\frac{9}{12!}+...+\frac{9}{100!}\)

\(B=9\left(\frac{1}{10!}+\frac{1}{11!}+\frac{1}{12!}+...+\frac{1}{100!}\right)< 9\left(\frac{1}{9.10}+\frac{1}{10.11}+\frac{1}{11.12}+...+\frac{1}{99.100}\right)\)

\(B< 9\left(\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}+...+\frac{1}{99}-\frac{1}{100}\right)\)

\(B< 9\left(\frac{1}{9}-\frac{1}{100}\right)=1-\frac{9}{100}< 1\) ( đpcm ) 

Vậy \(B< 1\)

Chúc bạn học tốt ~

7 tháng 3 2018

Xin lỗi đoạn cuối mình nhìn nhầm bài >_< 

23 tháng 6 2018

a, Ta có :

\(M=\dfrac{1}{1\cdot2}+\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{1\cdot2\cdot3\cdot4}+...+\dfrac{1}{1\cdot2\cdot3\cdot...\cdot100}\\ < \dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{99\cdot100}\\ =1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-...+\dfrac{1}{99}-\dfrac{1}{100}\\ =1-\dfrac{1}{100}=\dfrac{99}{100}< 1\\ \Rightarrow M< 1\\ \RightarrowĐpcm\)

14 tháng 7 2018

\(\frac{9}{10!}+\frac{10}{11!}+\frac{11}{12!}+...+\frac{99}{100!}\)

\(=\frac{10-1}{10!}+\frac{11-1}{11!}+\frac{12-1}{12!}+...+\frac{100-1}{100!}\)

\(=\frac{1}{9!}-\frac{1}{10!}+\frac{1}{10!}-\frac{1}{11!}+...+\frac{1}{99!}-\frac{1}{100!}\)

\(=\frac{1}{9!}-\frac{1}{100!}< \frac{1}{9!}\)

Ta có: 
9/n!<(n−1)/n!=1/(n−1)!−1/n! Với n>10,n∈Z 

⇒9/10!+9/11!+9/12!...+9/1000! 

=1/9!−1/10!+9/11!+9/12!+...+9/1000! 

<1/9!−1/10!+1/10!−1/11!+1/11!−1/12!+...... 

=1/9!−1/1000! 

<1/9!

Tick nhé 

8 tháng 3 2017

đúng rồi