K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 2: 

a: PTHĐGĐ là:

\(2x^2-3x+1=0\)

=>(2x-1)(x-1)=0

=>x=1 hoặc x=1/2

b: PTHĐGĐ là:

\(2x^2-\dfrac{6x-9}{2}=0\)

\(\Leftrightarrow4x^2-6x+9=0\)

\(\text{Δ}=\left(-6\right)^2-4\cdot4\cdot9=36-16\cdot9=-108< 0\)

Do đó: PTVN

12 tháng 6 2017

Bài 1:đường thẳng (d) là y= ax+b 

NHA MỌI NGƯỜI :>>

12 tháng 6 2017

Bài 1: đường thẳng (d) là y=ax+b

NHA MỌI NGƯỜI :>>

16 tháng 12 2021

a: tọa độ giao điểm M là:

\(\left\{{}\begin{matrix}2x-1=-x+2\\y=2x-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)

19 tháng 12 2021

\(a,PTHDGD:2x-1=-x+2\Leftrightarrow x=1\Leftrightarrow y=1\Leftrightarrow M\left(1;1\right)\\ b,\text{Gọi đt của }\left(d\right)\text{ là }y=ax+b\left(a\ne0\right)\\ \Leftrightarrow\left\{{}\begin{matrix}a+b=1\\0a+b=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-3\\b=4\end{matrix}\right.\Leftrightarrow\left(d\right):y=-3x+4\)

15 tháng 4 2019

ai giải bài này giùm với 

10 tháng 12 2020

Bài 1: 

a) Vì A là giao điểm của (d) và (d') nên hoành độ của A là nghiệm của phương trình hoành độ giao điểm có hai vế là hai hàm số của (d) và (d')

hay x=2x+2

\(\Leftrightarrow x-2x=2\)

\(\Leftrightarrow-x=2\)

hay x=-2

Thay x=-2 vào hàm số y=x, ta được: 

y=-2

Vậy: A(-2;-2)

7 tháng 11 2017

Bài 3 làm sao v ạ?

23 tháng 2 2021

a) Gọi phương trình đường thẳng cần lập là \(y=ax+b\left(d_1\right)\).

Để \(\left(d_1\right)\)//\(\left(d\right)\) thì \(a=2\) \(\Rightarrow\left(d_1\right):y=2x+b\).

Xét phương trình hoành độ giao điểm của \(\left(d_1\right)\) và \(\left(d'\right)\):

\(2x+b=3x-2\Leftrightarrow x=b+2\).

Hai đường thẳng này cắt nhau tại điểm có hoành độ là 2 

\(\Leftrightarrow b+2=2\Leftrightarrow b=0\).

Vậy phương trình đường thẳng cần lập là \(\left(d_1\right):y=2x\).

b) Gọi phương trình đường thẳng cần lập là \(y=ax+b\left(d_2\right)\).

\(\left(d_2\right)\perp\left(d'\right)\Leftrightarrow3a=-1\Leftrightarrow a=-\dfrac{1}{3}\)

\(\Rightarrow\left(d_2\right):y=-\dfrac{1}{3}x+b\).

Xét phương trình hoành độ giao điểm của \(\left(d_2\right)\) và \(\left(d\right)\):

\(2x-3=-\dfrac{1}{3}x+b\Leftrightarrow\dfrac{7}{3}x=b+3\Leftrightarrow x=\dfrac{3b+9}{7}\)

\(\Rightarrow y=2x-3=\dfrac{6b-3}{7}\).

Hai đường thẳng này cắt nhau tại điểm có tung độ bằng -1 

\(\Leftrightarrow\dfrac{6b-3}{7}=-1\Leftrightarrow6b-3=-7\Leftrightarrow b=-\dfrac{2}{3}\).

Vậy phương trình đường thẳng cần lập là \(\left(d_2\right):y=-\dfrac{1}{3}x-\dfrac{2}{3}\).