Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. a) D = [1;4] \{2;3}
b) D = (0;+∞)
2.
\(2\overrightarrow{a}\)= (2;4) và \(3\overrightarrow{b}\) = (9;12)
⇒ \(2\overrightarrow{a}\) + \(3\overrightarrow{b}\) = (2+9; 4+12)
⇔ (11; 16)
Vậy \(\overrightarrow{m}\) = (11;16)
a) \(\sqrt{2x+2}-\sqrt{2x-1}=x\)
\(\Leftrightarrow2x+2+2x-1-2\sqrt{\left(2x+2\right)\left(2x-1\right)}=x^2\)
\(\Leftrightarrow4x+1-2\sqrt{\left(2x+2\right)\left(2x-1\right)}=x^2\)
\(\Leftrightarrow2\sqrt{4x^2+2x-2}=-x^2+4x+1\)( ĐK: \(2-\sqrt{5}\le x\le2+\sqrt{5}\))
\(\Leftrightarrow4\left(4x^2+2x-2\right)=\left(x^2-4x-1\right)^2\)
\(\Leftrightarrow16x^2+8x-8=x^4-8x^3+14x^2+8x+1\)
\(\Leftrightarrow x^4-8x^3-2x^2+9=0\)
\(\Leftrightarrow x^4-x^3-7x^3+7x^2-9x^2+9=0\)
\(\Leftrightarrow x^3\left(x-1\right)-7x^2\left(x-1\right)-9\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^3-7x^2-9x-9\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\left(chon\right)\\x=8,22...\left(loai\right)\end{matrix}\right.\)
Vậy pt có nghiệm duy nhất \(x=-1\)
b_em ko chắc đâu, chưa từng làm dạng toán chứa tham số-_-
ĐK: \(x^2\ge-m\) ( ko chắc)
PT<=> \(\left(x-3\right)\sqrt{x^2+m}=\left(x-3\right)\left(x+3\right)\)
\(\Leftrightarrow\left(x-3\right)\left[x+3-\sqrt{x^2+m}\right]=0\)
Thấy ngay x = 3 thỏa mãn. Xét cái ngoặc to
\(\Leftrightarrow x+3=\sqrt{x^2+m}\left(\text{thêm đk }x\ge-3\right)\Leftrightarrow6x+9=m\Leftrightarrow x=\frac{\left(m-9\right)}{6}\)
Do \(x\ge-3\text{nên }m\ge-9\)
Vậy...
\(\overrightarrow{x}=\overrightarrow{a}+\overrightarrow{b}=\left(1+0;-2+3\right)=\left(1;1\right)\).
\(\overrightarrow{y}=\overrightarrow{a}-\overrightarrow{b}=\left(0-1;3-\left(-2\right)\right)=\left(-1;5\right)\).
\(\overrightarrow{z}=3\overrightarrow{a}-4\overrightarrow{b}=3\left(1;-2\right)-4\left(0;3\right)=\left(3;-6\right)-\left(0;12\right)\)\(=\left(3;-18\right)\).
H đối xứng B qua G \(\Rightarrow\overrightarrow{BH}=2\overrightarrow{BG}=2\left(\dfrac{1}{3}\overrightarrow{BA}+\dfrac{1}{3}\overrightarrow{BC}\right)=-\dfrac{2}{3}\overrightarrow{AB}+\dfrac{2}{3}\overrightarrow{BC}\)
\(\overrightarrow{AH}=\overrightarrow{AB}+\overrightarrow{BH}=\overrightarrow{AB}-\dfrac{2}{3}\overrightarrow{AB}+\dfrac{2}{3}\overrightarrow{BC}=\dfrac{1}{3}\overrightarrow{AB}+\dfrac{2}{3}\left(\overrightarrow{BA}+\overrightarrow{AC}\right)\)
\(=\dfrac{1}{3}\overrightarrow{AB}-\dfrac{2}{3}\overrightarrow{AB}+\dfrac{2}{3}\overrightarrow{AC}=\dfrac{2}{3}\overrightarrow{AC}-\dfrac{1}{3}\overrightarrow{AB}\)
\(\overrightarrow{CH}=\overrightarrow{CA}+\overrightarrow{AH}=-\overrightarrow{AC}+\dfrac{2}{3}\overrightarrow{AC}-\dfrac{1}{3}\overrightarrow{AB}=-\dfrac{1}{3}\overrightarrow{AB}-\dfrac{1}{3}\overrightarrow{AC}\)
\(\overrightarrow{MH}=\overrightarrow{MA}+\overrightarrow{AH}=-\dfrac{1}{2}\overrightarrow{AB}-\dfrac{1}{2}\overrightarrow{AC}+\dfrac{2}{3}\overrightarrow{AC}-\dfrac{1}{3}\overrightarrow{AB}\)
\(=-\dfrac{5}{6}\overrightarrow{AB}+\dfrac{1}{6}\overrightarrow{AC}\)
\(\overrightarrow{x}\) ⊥ \(\overrightarrow{y}\)
⇒ \(\left(\overrightarrow{a}+\overrightarrow{b}\right)\left(\overrightarrow{2a}-\overrightarrow{b}\right)=0\). Đặt \(\left|\overrightarrow{a}\right|=a;\left|\overrightarrow{b}\right|=b\)
⇒ 2a2 - \(\overrightarrow{a}.\overrightarrow{b}\) + 2\(\overrightarrow{a}.\overrightarrow{b}\) - b2 = 0
⇒ \(\overrightarrow{a}.\overrightarrow{b}\) = b2 - 2a2 = 4 - 4 = 0
⇒ \(\left(\overrightarrow{a};\overrightarrow{b}\right)=90^0\)
các bạn làm hộ mình nhé . Mình sắp thi rùi