Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
C A B M O H
hình hơi chênh lệch, bạn thông cảm vì mình vẽ phần mềm hình olm gà lắm
Xét \(\Delta AMC\)và \(\Delta BCM\)có :
\(\widehat{M}\)( chung ) ; \(\widehat{ACM}=\widehat{CBM}\left(=\frac{1}{2}sđ\widebat{AC}\right)\)
\(\Rightarrow\Delta AMC~\Delta CMB\left(g.g\right)\)
\(\Rightarrow\frac{AM}{MC}=\frac{MC}{MB}\Rightarrow MC^2=MA.MB\)
\(\Rightarrow MB=\frac{MC^2}{MA}=4a\)
Ta có : \(AB=MB-AM=4a-a=3a\)
Xét \(\Delta OCM\)có \(OC\perp CM\) :
\(\Rightarrow S_{OCM}=\frac{1}{2}OC.MC=\frac{1}{2}CH.OM\)
\(\Rightarrow CH=\frac{OC.MC}{OM}=\frac{\frac{AB}{2}.MC}{\frac{AB}{2}+AM}=\frac{6}{5}a\)
Cô hướng dẫn nhé nguyen van vu :)
K
a. Ta có góc COD = COM + MOD = \(\frac{AOM}{2}+\frac{BOM}{2}=\frac{180}{2}=90^o\)
b. Dễ thấy E là trung điểm CD, O là trung điểm AB nên OE song song AC. Vậy OE vuông góc AB.
c. Gọi MH là đường thẳng vuông góc AB, Ta chứng minh BC, AD đều cắt MH tại trung điểm của nó.
Gọi I là giao của AM và BD. Đầu tiên chứng minh ID = DB. Thật vậy, góc MID=IMD (Cùng bằng cung AM/2)
nên ID =MD, mà MD=DB nên ID=DB.
Gọi K là giao của MH và AD.
Theo Talet , \(\frac{MK}{DI}=\frac{AK}{AD}=\frac{KH}{BD}\Rightarrow MK=KH\)
Tương tự giao điểm của BC với MH cũng là trung điểm MH.
Tóm lại N trùng K hay MN vuông góc AB.
b)
Tam giác ABC nội tiếp đường tròn đường kính AB
=> Tam giác ABC vuông tại C
\(\Rightarrow\widehat{ACH}=\widehat{ABC}\) (cùng phụ với góc BAC)
Lại có: Góc M chung
=> ....