Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.Vì P,H đối xứng qua AM, H, Q đối xứng qua MB
→HI⊥AM,HJ⊥MB→HI⊥AM,HJ⊥MB
Mà AM⊥MB→MIHJAM⊥MB→MIHJ là hình chữ nhật
→→bốn điểm M , I , H , J thuộc một đường tròn.
b.Ta có : HI⊥AM,MH⊥AB,HJ⊥MB→MI.MA=MH2=MJ.MBHI⊥AM,MH⊥AB,HJ⊥MB→MI.MA=MH2=MJ.MB
c.Vì P,HP,H đối xứng qua AM
→ˆPMA=ˆAMH=ˆMBA→PM→PMA^=AMH^=MBA^→PM là tiếp tuyến của (O)
Tương tự MQMQ là tiếp tuyến của (O)
→PQ→PQ là tiếp tuyến của (O)
d.Ta có :
BKKP=BQAP=BHAH=BJJM→KJ//MPBKKP=BQAP=BHAH=BJJM→KJ//MP
Tương tự KI//MQ→I,K,JKI//MQ→I,K,J thẳng hàng
a, Vì CA = CM ( tc tiếp tuyến cắt nhau )
OA = OM = R
=> OC là đường trung trực đoạn AM
=> OC vuông AM
^AMB = 900 ( góc nội tiếp chắn nửa đường tròn )
=> AM vuông MB (1)
Ta có : DM = DB ( tc tiếp tuyến cắt nhau )
OM = OB = R
=> OD là đường trung trực đoạn MB
=> OD vuông MB (2)
Từ (1) ; (2) => OD // AM
b, OD giao MB = {T}
OC giao AM = {U}
Xét tứ giác OUMT có ^OUM = ^UMT = ^MTO = 900
=> tứ giác OUMT là hcn => ^UOT = 900
Vì CD là tiếp tuyến (O) với M là tiếp điểm => ^OMD = 900
Mặt khác : BD = DM ( tc tiếp tuyến cắt nhau )
CM = AC ( tc tiếp tuyến cắt nhau )
Xét tam giác COD vuông tại O, đường cao OM
Ta có : \(OM^2=CM.MD\)hay \(OM^2=AC.BD\)=> R^2 = AC.BD
c, Gọi I là trung điểm CD
O là trung điểm AB
khi đó OI là đường trung bình hình thang BDAC
=> OI // AC mà AC vuông AB ( tc tiếp tuyến ) => OI vuông AB
Xét tam giác COD vuông tại O, I là trung điểm => OI = IC = ID = R
Vậy AB là tiếp tuyến đường tròn (I;CD/2)
a: Xét tứ giác ABNM có
AM//BN
góc AMN=90 độ
Do đó: ABNM là hình thang vuông
b: AM//CO
=>gó MAC=góc OCA=góc OAC
=>AC là phân giác của góc BAM
a: Xét tứ giác ABNM có
AM//BN
góc AMN=90 độ
=>ABNM là hình thang vuông
b: AM//CO
=>góc MAC=góc OCA
=>góc MAC=góc OAC
=>AC là phân giác của góc BAM
a: Xét (O) có
ΔMAB nội tiếp
AB là đường kính
Do đó: ΔMAB vuông tại M
Xét tứ giác MDNE có góc MDN=góc MEN=góc DME=90 độ
nên MDNE là hình chữ nhật
b: DM*AM=MN^2
ME*MB=MN^2
Do đó: DM*AM=ME*MB
c: góc DEO'
=góc DEN+góc O'EN
=góc AMM+góc MAN=90 độ
=>DE là tiếp tuyến của (O')