Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì BA=BA ( GT )
\(\Rightarrow\Delta BAD\) cân tại B ( đn)
\(\Rightarrow\widehat{BAD}=\widehat{BDA}\)( tính chất ) (4)
b) Vì tam giác HAD vuông tại H \(\Rightarrow\widehat{HAD}+\widehat{D1}=90^0\)( phụ nhau ) (1)
Ta có: \(\widehat{DAC}+\widehat{DAB}=\widehat{BAC}=90^0\)( h.vẽ) (2)
Từ (1) và (2) \(\Rightarrow\widehat{HAD}+\widehat{BDA}=\widehat{DAC}+\widehat{DAB}\)( 3)
Từ (3) và (4) \(\Rightarrow\widehat{HAD}=\widehat{CAD}\)mà AD nằm giữa 2 tia AH và AC ( c.ve)
\(\Rightarrow AD\)là phân giác của góc HAC.
c) Xét \(\Delta HAD\)và \(\Delta CAD\)có:
\(\hept{\begin{cases}\widehat{AHD}=\widehat{ACD}=90^0\\ADchung\\\widehat{HAD}=\widehat{CAD}\left(cmt\right)\end{cases}\Rightarrow\Delta HAD=\Delta CAD\left(ch-gn\right)}\)
\(\Rightarrow\hept{\begin{cases}HD=CD\left(2canhtuongung\right)\\AH=AK\left(2canhtuongung\right)\end{cases}}\)
Xét tam giác DHC có HD=CD ( cmt)
\(\Rightarrow\Delta DHC\)cân tại D
\(\Rightarrow\widehat{DHC}=\widehat{DCH}\left(tc\right)\) (5)
Ta có: \(\widehat{H1}+\widehat{DHC}=\widehat{AHD}=90^0\) (6)
\(\widehat{K1}+\widehat{DCH}=\widehat{AKD}=90^0\)(7)
Từ (5) , (6) và (7) \(\Rightarrow\widehat{H1}=\widehat{K1}\)
\(\Rightarrow\Delta AHK\)cân tại A.
d) Xét tam giác DKC vuông tại K nên \(DC>KC\)( tính chất )
\(\Rightarrow DC+AK>KC+AK\)
mà AH=AK ( cmt)
\(\Rightarrow DC+AH>KC+AK\)
\(\Rightarrow DC+AH+BD>KC+AK+BD\)
mà AB=BD ( cmt)
\(\Rightarrow AK+KC+AB< DC+BD+AH\)
\(\Rightarrow AB+AC< BC+AH\left(đpcm\right)\)
( p/s: Đánh giấu cho tôi kí hiệu góc H1 và K1 nhé chắc bạn biết mà )
1 a,Ta có ∆ ABC= ∆ HIK, nên cạnh tương ứng với BC là cạnh IK
góc tương ứng với góc H là góc A.
ta có : ∆ ABC= ∆ HIK
Suy ra: AB=HI, AC=HK, BC=IK.
=, =,=.
b,
∆ ABC= ∆HIK
Suy ra: AB=HI=2cm, BC=IK=6cm, ==400
2.
Ta có ∆ABC= ∆ DEF
Suy ra: AB=DE=4cm, BC=EF=6cm, DF=AC=5cm.
Chu vi của tam giác ABC bằng: AB+BC+AC= 4+5+6=15 (cm)
Chu vi của tam giác DEF bằng: DE+EF+DF= 4+5+6=15 (cm
Bài 1:
a: Hai cạnh đáy là AB,CD
Hai cạnh bên là AD,BC
b: Các cặp góc kề cạnh đáy là:
\(\widehat{BAD};\widehat{ABC}\)
\(\widehat{ADC};\widehat{BCD}\)
Các cặp góc kề cạnh bên là:
\(\widehat{BAD};\widehat{ADC}\)
\(\widehat{ABC};\widehat{BCD}\)
c: Hai đường chéo là AC,BD
Bài 2:
a: Ta có: ΔDAC vuông cân tại D
=>\(\widehat{DAC}=\widehat{DCA}=45^0\)
Ta có: ΔABC vuông cân tại A
=>\(\widehat{ABC}=\widehat{ACB}=45^0\)
Ta có: \(\widehat{DAC}=\widehat{ACB}\left(=45^0\right)\)
mà hai góc này là hai góc ở vị trí so le trong
nên AD//CB
=>ABCD là hình thang
Hình thang ABCD có AD\(\perp\)DC
nên ABCD là hình thang vuông
b: ABCD là hình thang vuông có hai đáy là AD,CB và AD\(\perp\)DC
=>CB\(\perp\)CD
=>\(\widehat{ADC}=\widehat{DCB}=90^0\)
Ta có: AD//CB
=>\(\widehat{DAB}+\widehat{ABC}=180^0\)
=>\(\widehat{DAB}=180^0-45^0=135^0\)