K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1:

loading...

a: Hai cạnh đáy là AB,CD

Hai cạnh bên là AD,BC

b: Các cặp góc kề cạnh đáy là:

\(\widehat{BAD};\widehat{ABC}\)

\(\widehat{ADC};\widehat{BCD}\)

Các cặp góc kề cạnh bên là:

\(\widehat{BAD};\widehat{ADC}\)

\(\widehat{ABC};\widehat{BCD}\)

c: Hai đường chéo là AC,BD

 

Bài 2:

a: Ta có: ΔDAC vuông cân tại D

=>\(\widehat{DAC}=\widehat{DCA}=45^0\)

Ta có: ΔABC vuông cân tại A

=>\(\widehat{ABC}=\widehat{ACB}=45^0\)

Ta có: \(\widehat{DAC}=\widehat{ACB}\left(=45^0\right)\)

mà hai góc này là hai góc ở vị trí so le trong

nên AD//CB

=>ABCD là hình thang

Hình thang ABCD có AD\(\perp\)DC

nên ABCD là hình thang vuông

b: ABCD là hình thang vuông có hai đáy là AD,CB và AD\(\perp\)DC

=>CB\(\perp\)CD

=>\(\widehat{ADC}=\widehat{DCB}=90^0\)

Ta có: AD//CB

=>\(\widehat{DAB}+\widehat{ABC}=180^0\)

=>\(\widehat{DAB}=180^0-45^0=135^0\)

BÀI TẬP VỀ TRƯỜNG HỢP CẠNH GÓC CẠNHBài 1: Cho tam giác ABC. Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm E sao cho IE = IB. Chứng minh rằng : a) AE = BC; b)AB // ECBài 2: Cho góc xOy.Trên cạnh Ox lấy các điểm A và B, trên cạnh Oy lấy các điểm C và D sao cho OA = OC, OB = OD. Chứng minh rằng: AD = BCBài 3: Tên các cạnh Ox và Oy của góc xOy, lấy các điểm A và B sao cho OA = OB.Tia phân...
Đọc tiếp

BÀI TẬP VỀ TRƯỜNG HỢP CẠNH GÓC CẠNH

Bài 1: Cho tam giác ABC. Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm E sao cho IE = IB. Chứng minh rằng :

a) AE = BC; b)AB // EC

Bài 2: Cho góc xOy.Trên cạnh Ox lấy các điểm A và B, trên cạnh Oy lấy các điểm C và D sao cho OA = OC, OB = OD. Chứng minh rằng: AD = BC

Bài 3: Tên các cạnh Ox và Oy của góc xOy, lấy các điểm A và B sao cho OA = OB.Tia phân giác của góc xOy cắt AB ở C. Chứng minh rằng

a) C là trung điểm của AB

b) AB vuông góc với OC

Bài 4: Cho tam giác ABC có AB = AC, M là trung điểm của cạnh BC. Trên tia đối của tia BC và CB lấy tương ứng hai điểm D và E sao cho BD = CE. Chứng minh rằng AM là tia phân giác của góc BAC và DAE

Bài 5: Cho tam giác ABC có góc A = 1000, M là trung điểm của BC. Trên tia đối của tia MA lấy điểm K sao cho MK = MA

a) Tính số đo góc ABK

b) về phía ngoài tam giác ABC, vẽ các đoạn thẳng AD vuông góc và bằng AB, AE vuông góc và bằng AC. Chứng minh rằng: tam giác ABK bằng tam giác DAK

c) Chứng minh MA vuông góc với DE

Bài 6: Cho tam giác ABC, D là trung điểm của cạnh AB, E là trung điểm của cạnh AC. Chứng minh rằng DE//BC và DE = 1/2 BC

Bài 7: Cho tam giác ABC vuông tại A, M là trung điểm của BC. Chứng minh rằng AM =1/2BC

Bài 8: Cho tam giác ABC vuông tại A và AB < AC. Trên cạnh AC lấy điểm D sao cho AD = AB. Trên tia đối của tia AB lấy điểm E sao cho AE = AC

a) Chứng minh rằng DE vuông góc với BC

b) Cho biết 4B = 5C trung điểm của BC. Chứng minh rằng :

a) FH = 2DE.

b) FH vuông góc với DE.

3
15 tháng 12 2016

nhìu quá bn à TTvTT

23 tháng 12 2016

từ từ thui

16 tháng 9 2021

B d d' C A                       

bÀI 1 NHÉ bạn. mình ko alfm đc bài 2.  t ick nha

16 tháng 9 2021

giúp mình với mình đang cần gấp 

3 tháng 4 2019

A B C H D K 1 2

                     

3 tháng 4 2019

a) Vì BA=BA ( GT )

\(\Rightarrow\Delta BAD\) cân tại B ( đn)

\(\Rightarrow\widehat{BAD}=\widehat{BDA}\)( tính chất )      (4)

b) Vì tam giác HAD vuông tại H \(\Rightarrow\widehat{HAD}+\widehat{D1}=90^0\)( phụ nhau )    (1)

Ta có: \(\widehat{DAC}+\widehat{DAB}=\widehat{BAC}=90^0\)( h.vẽ)      (2)

 Từ (1) và (2) \(\Rightarrow\widehat{HAD}+\widehat{BDA}=\widehat{DAC}+\widehat{DAB}\)( 3)

Từ (3) và (4) \(\Rightarrow\widehat{HAD}=\widehat{CAD}\)mà AD nằm giữa 2 tia AH và AC ( c.ve)

\(\Rightarrow AD\)là phân giác của góc HAC.

c)  Xét \(\Delta HAD\)và \(\Delta CAD\)có:

           \(\hept{\begin{cases}\widehat{AHD}=\widehat{ACD}=90^0\\ADchung\\\widehat{HAD}=\widehat{CAD}\left(cmt\right)\end{cases}\Rightarrow\Delta HAD=\Delta CAD\left(ch-gn\right)}\)

\(\Rightarrow\hept{\begin{cases}HD=CD\left(2canhtuongung\right)\\AH=AK\left(2canhtuongung\right)\end{cases}}\)

Xét tam giác DHC có HD=CD ( cmt)

\(\Rightarrow\Delta DHC\)cân tại D

\(\Rightarrow\widehat{DHC}=\widehat{DCH}\left(tc\right)\) (5)

Ta có:  \(\widehat{H1}+\widehat{DHC}=\widehat{AHD}=90^0\) (6)

            \(\widehat{K1}+\widehat{DCH}=\widehat{AKD}=90^0\)(7)

Từ (5) , (6) và (7) \(\Rightarrow\widehat{H1}=\widehat{K1}\)

\(\Rightarrow\Delta AHK\)cân tại A.

d) Xét tam giác DKC vuông tại K nên \(DC>KC\)( tính chất )

                                                    \(\Rightarrow DC+AK>KC+AK\)

                                            mà AH=AK ( cmt)

                                                     \(\Rightarrow DC+AH>KC+AK\)

                                                      \(\Rightarrow DC+AH+BD>KC+AK+BD\)

                                                        mà AB=BD ( cmt)

                                                      \(\Rightarrow AK+KC+AB< DC+BD+AH\)

                                                       \(\Rightarrow AB+AC< BC+AH\left(đpcm\right)\)

                                           

( p/s: Đánh giấu cho tôi kí hiệu góc H1 và K1 nhé chắc bạn biết mà )

21 tháng 10 2016

giúp mình vs mình cũng cần

21 tháng 10 2016

1 a,Ta có ∆ ABC= ∆ HIK, nên cạnh tương ứng với BC là cạnh IK

góc tương ứng với góc H là góc A.

ta có : ∆ ABC= ∆ HIK

Suy ra: AB=HI, AC=HK, BC=IK.

=, =,=.

b,

∆ ABC= ∆HIK

Suy ra: AB=HI=2cm, BC=IK=6cm, ==400

2.

Ta có ∆ABC= ∆ DEF

Suy ra: AB=DE=4cm, BC=EF=6cm, DF=AC=5cm.

Chu vi của tam giác ABC bằng: AB+BC+AC= 4+5+6=15 (cm)

Chu vi của tam giác DEF bằng: DE+EF+DF= 4+5+6=15 (cm