Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: AD = BC = 3 (cm) (tính chất hình thang cân)
ˆABD=ˆBDC (so le trong)
ˆADB=ˆBDC(gt)
⇒ˆABD=ˆADB
⇒ ∆ ABD cân tại A
⇒ AB = AD = 3 (cm)
∆ BDC vuông tại B
⇒ˆBDC+ˆC=90độ ⇒BDC^+C^=90độ
ˆADC=ˆCADC^=C^ (gt)
Mà ˆBDC=12ˆADC nên ˆBDC=12ˆCBD
C^+12C^=90độ ⇒C^=60độ
Từ B kẻ đường thẳng song song AD cắt CD tại E.
Hình thang ABED có hai cạnh bên song song nên AB = DE và AD = BE
⇒ DE = 3 (cm), BE = 3 (cm)
ˆBEC=ˆADC (đồng vị )
Suy ra: ˆBEC=ˆCBE
⇒ ∆ BEC cân tại B có C^=60 độ
⇒ ∆ BEC đều
⇒ EC = BC = 3 (cm)
CD = CE + ED = 3 + 3 = 6 (cm)
Các tam giác cân trên hình 112:
-ΔADE cân tại A: có các cạnh bên là AD và AE; cạnh đáy: DE; góc D và góc E là hai góc ở đáy; góc A là góc ở đỉnh
-ΔABC cân tại A: có các cạnh bên là AB và AC; cạnh đáy: BC; góc B và góc C là hai góc ở đáy; góc A là góc ở đỉnh
-ΔAHC cân tại A: có các cạnh bên là AH và AC; cạnh đáy: HC; góc H và góc C là hai góc ở đáy; góc A là góc ở đỉnh
Ta thấy: \(\Delta MEF\)cân tại M do ME = MF có:
+ cạnh bên: ME, MF
+ cạnh đáy: EF
+ góc ở đỉnh: \(\widehat {EMF}\)
+ góc ở đáy: \(\widehat {MEF}\),\(\widehat {MFE}\)
\(\Delta MNP\) cân tại M do MN = MP có:
+ cạnh bên: MN, MP
+ cạnh đáy: NP
+ góc ở đỉnh: \(\widehat {NMP}\)
+ góc ở đáy: \(\widehat {NPM}\), \(\widehat {PNM}\)
\(\Delta MHP\) cân tại M do MH = MP có:
+ cạnh bên : MH, MP
+ cạnh đáy: HP
+ góc ở đỉnh: \(\widehat {PMH}\)
+ góc ở đáy: \(\widehat {MPH}\),\(\widehat {MHP}\)
Bài 1:
a: Hai cạnh đáy là AB,CD
Hai cạnh bên là AD,BC
b: Các cặp góc kề cạnh đáy là:
\(\widehat{BAD};\widehat{ABC}\)
\(\widehat{ADC};\widehat{BCD}\)
Các cặp góc kề cạnh bên là:
\(\widehat{BAD};\widehat{ADC}\)
\(\widehat{ABC};\widehat{BCD}\)
c: Hai đường chéo là AC,BD
Bài 2:
a: Ta có: ΔDAC vuông cân tại D
=>\(\widehat{DAC}=\widehat{DCA}=45^0\)
Ta có: ΔABC vuông cân tại A
=>\(\widehat{ABC}=\widehat{ACB}=45^0\)
Ta có: \(\widehat{DAC}=\widehat{ACB}\left(=45^0\right)\)
mà hai góc này là hai góc ở vị trí so le trong
nên AD//CB
=>ABCD là hình thang
Hình thang ABCD có AD\(\perp\)DC
nên ABCD là hình thang vuông
b: ABCD là hình thang vuông có hai đáy là AD,CB và AD\(\perp\)DC
=>CB\(\perp\)CD
=>\(\widehat{ADC}=\widehat{DCB}=90^0\)
Ta có: AD//CB
=>\(\widehat{DAB}+\widehat{ABC}=180^0\)
=>\(\widehat{DAB}=180^0-45^0=135^0\)