Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét và có:
DE=FB
=
AB = DC
=(c.g.c)
EC= AF
Ta có: ^DEC + ^FEC = ^AFB+^EFC=180* mà ^DEC=^AFB
-> ^FEC=^EFC -> AF//CE
Tứ giác AFCE có: EC=AF và AF//CE -> AFCE là hình bình hành
b, Gọi O là giao điểm của AC và EF -> O thuộc BD ( E,F thuộc BD )
Tứ giác ANCM có: AN// MC , AM//CN -> ANCM là hình bình hành.
-> O là giao điểm của AC và MN
-> AC, MN,BD đồng quy tại O
1:
a: Xét tứ giác BMDN có
DM//BN
DM=BN
Do đó: BMDN là hình bình hành
Suy ra: BM//DN
a) Ta có:
+) M là trung điểm OD
\(\Rightarrow MD=MO=\frac{1}{2}OD\)
N là trung điểm OB
\(\Rightarrow NB=NO=\frac{1}{2}OB\)
Mà OD=OB ( O là giao điểm 2 đường chéo của hình bình hành ABCD)
Suy ra ON=OM=NB=MD (1)
Ta lại có OA=OC
Tứ giác AMCN có hai đường chéo cắt nhau tại trung điểm mỗi đường nên là hình bình hành
b) AMCN là hình bình hành =>NC//AM=> FC//AE mà AF//EC
Vậy suy ra AFCE là hình bình hành
O là trung điểm AC => O là trung điểm EF=> E đối xứng với F qua O
c) AC, BD, EF đều qua O nên đồng quy
d) Xét tam giác DNC có NC//ME
\(\Rightarrow\frac{DE}{EC}=\frac{DM}{MN}\)
Mà DM=OM=ON ( theo 1)
=> \(DM=\frac{1}{2}MN\)
=>\(\frac{DE}{EC}=\frac{DM}{MN}=\frac{1}{2}\Rightarrow DE=\frac{1}{2}EC\)
e) Để hình bình hành AMCN là hình chữ nhật thì MN=AC
Mà \(MN=\frac{1}{2}BD\)nên \(AC=\frac{1}{2}BD\)
Vậy ABCD cần điều kiện là \(AC=\frac{1}{2}BD\)thì AMCN là hình chữ nhật