K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 3 2017

Ai giúp mk không ?? Ace LegonaHoang Hung QuanAn NguyễnNguyễn Huy TúHoàng Thị Ngọc AnhNguyễn Nhật Minhsoyeon_Tiểubàng giảiĐịnh Quang ( Real )Trần Việt LinhNguyễn Quang Duy

14 tháng 3 2017

làm j z bạn

8 tháng 4 2017

Câu 2 : x^2+4x-5=x^2-1+4x-4= (x-1)(x+1)+4(x-1)= (x-1)(x+5)=0 nên suy ra x=1 hoặc -5

12 tháng 4 2017

-4^2 hay -4x^2

12 tháng 4 2017

Giúp mình giả câu b) ấy mọi người TT^TT

a,Cách 1 :  \(x^2-10x+9=0\Leftrightarrow\left(x-1\right)\left(x-9\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=9\end{cases}}\)

Cách 2 : Dung p^2 nhẩm nghiệm p^2 bậc 2 vì : 1 - 10 + 9 = 0 

\(\Leftrightarrow\orbr{\begin{cases}x_1=1\\x_2=\frac{c}{a}=9\end{cases}}\)

b, Cách 1 : \(8x^2-2x-15=0\Leftrightarrow\left(4x+5\right)\left(2x-3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{5}{4}\\x=\frac{3}{2}\end{cases}}\)

Cách 2 : \(\Delta=\left(-2\right)^2-4.8.\left(-15\right)=484>0\)

Pp có 2 nghiệm phân biệt : \(x_1=\frac{-2-\sqrt{484}}{16};x_2=\frac{-2+\sqrt{484}}{16}\)

20 tháng 8 2020

toán 9 à bạn ?

c,\(2x^2+8x-7=0\)

Ta có : \(\Delta=8^2-4.\left(-7\right).2=64+56=120\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{-8+\sqrt{120}}{4}=-2+\frac{\sqrt{120}}{4}\\x=\frac{-8-\sqrt{120}}{4}=-2-\frac{\sqrt{120}}{4}\end{cases}}\)

d,\(3x^2-15x+3=0\)

Ta có : \(\Delta=\left(-15\right)^2-4.3.3=225-36=189\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{15+\sqrt{189}}{6}\\x=\frac{15-\sqrt{189}}{6}\end{cases}}\)

e,\(16x^2-24x-4=0\Leftrightarrow4x^2-6x-1=0\)

Ta có : \(\Delta=\left(-6\right)^2-4.4.\left(-1\right)=36+16=52\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{6+\sqrt{52}}{8}\\x=\frac{6-\sqrt{52}}{8}\end{cases}}\)

f, \(-5x^2+6x+3=0\)

Ta có : \(\Delta=6^2-4.3.\left(-5\right)=36+60=96\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{-6+\sqrt{96}}{-10}\\x=\frac{-6-\sqrt{96}}{-10}\end{cases}}\)

i, \(6x^2-9x+40=0\)

Ta có : \(\Delta=\left(-9\right)^2-4.6.40=81-960=-879\)

do đen ta < 0 => vô nghiệm 

a)

Cách 1:

Ta có: \(x^2-10x+9=0\)

\(\Leftrightarrow x^2-x-9x+9=0\)

\(\Leftrightarrow x\left(x-1\right)-9\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-9\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-9=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=9\end{matrix}\right.\)

Vậy: S={1;9}

Cách 2:

Ta có: \(x^2-10x+9=0\)

\(\Leftrightarrow x^2-10x+25-16=0\)

\(\Leftrightarrow\left(x-5\right)^2=16\)

\(\Leftrightarrow\left[{}\begin{matrix}x-5=4\\x-5=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=9\\x=1\end{matrix}\right.\)

Vậy: S={9;1}

b)

Cách 1:

Ta có: \(8x^2-2x-15=0\)

\(\Leftrightarrow8x^2-12x+10x-15=0\)

\(\Leftrightarrow4x\left(2x-3\right)+5\left(2x-3\right)=0\)

\(\Leftrightarrow\left(2x-3\right)\left(4x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-3=0\\4x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=3\\4x=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{3}{2}\\x=\frac{-5}{4}\end{matrix}\right.\)

Vậy: \(S=\left\{\frac{3}{2};\frac{-5}{4}\right\}\)

Cách 2:

Ta có: \(8x^2-2x-15=0\)

\(\Leftrightarrow8\left(x^2-\frac{1}{4}x-\frac{15}{8}\right)=0\)

\(\Leftrightarrow x^2-\frac{1}{4}x-\frac{15}{8}=0\)

\(\Leftrightarrow x^2-2\cdot x\cdot\frac{1}{8}+\frac{1}{64}-\frac{121}{64}=0\)

\(\Leftrightarrow\left(x-\frac{1}{8}\right)^2=\frac{121}{64}\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\frac{1}{8}=\frac{11}{8}\\x-\frac{1}{8}=-\frac{11}{8}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{12}{8}=\frac{3}{2}\\x=\frac{-11+1}{8}=\frac{-10}{8}=\frac{-5}{4}\end{matrix}\right.\)

Vậy: \(S=\left\{\frac{3}{2};\frac{-5}{4}\right\}\)

c) Ta có: \(2x^2+8x-7=0\)

\(\Leftrightarrow2\left(x^2+4x-\frac{7}{2}\right)=0\)

\(\Leftrightarrow x^2+4x+4-\frac{15}{2}=0\)

\(\Leftrightarrow\left(x+2\right)^2=\frac{15}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}x+2=\sqrt{\frac{15}{2}}\\x+2=-\sqrt{\frac{15}{2}}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{\frac{15}{2}}-2\\x=-\sqrt{\frac{15}{2}}-2\end{matrix}\right.\)

Vậy: \(S=\left\{\sqrt{\frac{15}{2}}-2;-\sqrt{\frac{15}{2}}-2\right\}\)

d) Ta có: \(3x^2-15x+3=0\)

\(\Leftrightarrow3\left(x^2-5x+1\right)=0\)

\(\Leftrightarrow x^2-5x+1=0\)

\(\Leftrightarrow x^2-2\cdot x\cdot\frac{5}{2}+\frac{25}{4}-\frac{21}{4}=0\)

\(\Leftrightarrow\left(x-\frac{5}{2}\right)^2=\frac{21}{4}\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\frac{5}{2}=\frac{\sqrt{21}}{2}\\x-\frac{5}{2}=-\frac{\sqrt{21}}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{\sqrt{21}+5}{2}\\x=\frac{-\sqrt{21}+5}{2}\end{matrix}\right.\)

Vậy: \(S=\left\{\frac{\sqrt{21}+5}{2};\frac{-\sqrt{21}+5}{2}\right\}\)

e) Ta có: \(16x^2-24x-4=0\)

\(\Leftrightarrow4\left(4x^2-6x-1\right)=0\)

\(\Leftrightarrow4x^2-6x-1=0\)

\(\Leftrightarrow\left(2x\right)^2-2\cdot2x\cdot\frac{3}{2}+\frac{9}{4}-\frac{13}{4}=0\)

\(\Leftrightarrow\left(2x-\frac{3}{2}\right)^2=\frac{13}{4}\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-\frac{3}{2}=\frac{\sqrt{13}}{2}\\2x-\frac{3}{2}=-\frac{\sqrt{13}}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=\frac{3+\sqrt{13}}{2}\\2x=\frac{3-\sqrt{13}}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{3+\sqrt{13}}{2}:2=\frac{3+\sqrt{13}}{4}\\x=\frac{3-\sqrt{13}}{2}:2=\frac{3-\sqrt{13}}{4}\end{matrix}\right.\)

Vậy: \(S=\left\{\frac{3+\sqrt{13}}{4};\frac{3-\sqrt{13}}{4}\right\}\)

f) Ta có: \(-5x^2+6x+3=0\)

\(\Leftrightarrow-5\left(x^2-\frac{6}{5}x-\frac{3}{5}\right)=0\)

\(\Leftrightarrow x^2-\frac{6}{5}x-\frac{3}{5}=0\)

\(\Leftrightarrow x^2-2\cdot x\cdot\frac{3}{5}+\frac{9}{25}-\frac{24}{25}=0\)

\(\Leftrightarrow\left(x-\frac{3}{5}\right)^2=\frac{24}{25}\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\frac{3}{5}=\frac{2\sqrt{6}}{5}\\x-\frac{3}{5}=\frac{-2\sqrt{6}}{5}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{3+2\sqrt{6}}{5}\\x=\frac{3-2\sqrt{6}}{5}\end{matrix}\right.\)

Vậy: \(S=\left\{\frac{3+2\sqrt{6}}{5};\frac{3-2\sqrt{6}}{5}\right\}\)

i) Ta có: \(6x^2-9x+40=0\)

\(\Leftrightarrow6\left(x^2-\frac{3}{2}x+\frac{20}{3}\right)=0\)

\(\Leftrightarrow x^2-\frac{3}{2}x+\frac{20}{3}=0\)

\(\Leftrightarrow x^2-2\cdot x\cdot\frac{3}{4}+\frac{9}{16}+\frac{293}{48}=0\)

\(\Leftrightarrow\left(x-\frac{3}{4}\right)^2+\frac{293}{48}=0\)(vô lý)

Vậy: \(S=\varnothing\)

18 tháng 6 2019

Ứng dụng giải toán đã được review rất hay bởi trang báo uy tín https://www.facebook.com/docbaoonlinethayban/videos/467035000526358/?v=467035000526358 Cả nhà tải ngay bằng link dưới đây nhé. https://giaingay.com.vn/downapp.html

18 tháng 6 2019

Với Kho Đề đã được cập nhật, hiện tại Đáp Án Chi Tiết môn TOÁN Kỳ thi THPT quốc gia đã có trên Ứng Dụng. Các bạn tha hồ kiểm tra đối chiếu với bài làm của mình rồi nhé Tải ngay App về để xem đáp án chi tiết nào: https://giaingay.com.vn/downapp.html

5 tháng 2 2018

1, \(\left(x-4\right)^2-\left(2x+1\right)^2=\left(x-4-2x-1\right)\left(x-4+2x+1\right)=-3\left(x+5\right)\left(x-1\right).\)

\(\orbr{\begin{cases}x+5=0\\x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-5\\x=1\end{cases}}}\)(mấy cái này áp dụng hàng đẳng thức lớp 8 mới hok)

2,\(x^3+x^2-4x-4=\left(x-2\right)\left(x^2+3x+2\right)=\left(x-2\right)\left(x+1\right)\left(x+2\right)\)

\(\orbr{\begin{cases}x=\mp2\\\end{cases}}x=-1\)

tương tụ lm tiếp nhe buồn ngủ quá rồi !

16 tháng 6 2017

cái j sao khó nhìn vậy

11 tháng 2 2022
KHÓOOOOOOOOOO QUÁAAAAAAA ĐIIIIIIIIIIIIIIIIIIII CHẾTTTTTTTTTTTTT