Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
ĐKXĐ: \(x\ne\left\{-1;1\right\}\)
\(P=\left(\frac{x+1}{2\left(x-1\right)}+\frac{3}{\left(x-1\right)\left(x+1\right)}-\frac{x+3}{2\left(x+1\right)}\right).\frac{4\left(x^2-1\right)}{5}\)
\(P=\left(\frac{\left(x+1\right)^2}{2\left(x-1\right)\left(x+1\right)}+\frac{6}{2\left(x-1\right)\left(x+1\right)}-\frac{\left(x-1\right)\left(x+3\right)}{2\left(x-1\right)\left(x+1\right)}\right).\frac{4\left(x^2-1\right)}{5}\)
\(P=\left(\frac{x^2+2x+1+6-x^2-2x+3}{2\left(x^2-1\right)}\right)\frac{4\left(x^2-1\right)}{5}\)
\(P=\frac{10.4.\left(x^2-1\right)}{2\left(x^2-1\right).5}=\frac{40}{10}=4\)
Bài 2:
ĐK: \(x\ne\left\{-2;2;\right\}\)
\(A=\left(\frac{x}{\left(x-2\right)\left(x+2\right)}-\frac{2}{x-2}+\frac{1}{x+2}\right):\left(\frac{\left(x-2\right)\left(x+2\right)+10-x^2}{x+2}\right)\)
\(A=\left(\frac{x}{\left(x-2\right)\left(x+2\right)}-\frac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{x-2}{\left(x-2\right)\left(x+2\right)}\right).\frac{x+2}{6}\)
\(A=\left(\frac{x-2x-4+x-2}{\left(x-2\right)\left(x+2\right)}\right).\frac{\left(x+2\right)}{6}\)
\(A=\frac{-6\left(x+2\right)}{6\left(x-2\right)\left(x+2\right)}=\frac{-1}{x-2}\)
b/ \(\left|x\right|=\frac{1}{2}\Rightarrow\left[{}\begin{matrix}x=\frac{1}{2}\\x=-\frac{1}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}A=\frac{-1}{\frac{1}{2}-2}=\frac{2}{3}\\A=\frac{-1}{-\frac{1}{2}-2}=\frac{2}{5}\end{matrix}\right.\)
c/ \(A< 0\Rightarrow\frac{-1}{x-2}< 0\Rightarrow\frac{1}{x-2}>0\Rightarrow x-2>0\Rightarrow x>2\)
\(\)
Cho mình sửa lại câu b nha!
\(\frac{\left(x^2+a\right)\left(1+a\right)+a^2x^2+1}{\left(x^2-a\right)\left(1-a\right)+a^2x^2+1}\)
a/\(n^3+17n=n^3-n+18n=n\left(n-1\right)\left(n+1\right)+18n\)
Có n(n-1)(n+1) vừa chia hết cho 2,3 nên chia hết cho 6 (2,3 nguyên tố cùng nhau)
Và 18n chia hết 6
Nên có ĐPCM
Bài 2:
a) ĐK: $x\geq \pm \frac{1}{2}; x\neq 0$
\(\left(\frac{2x+1}{2x-1}-\frac{2x-1}{2x+1}\right):\frac{4x}{10x-5}=\frac{(2x+1)^2-(2x-1)^2}{(2x-1)(2x+1)}.\frac{10x-5}{4x}\)
\(\frac{4x^2+4x+1-(4x^2-4x+1)}{(2x-1)(2x+1)}.\frac{5(2x-1)}{4x}=\frac{8x}{(2x-1)(2x+1)}.\frac{5(2x-1)}{4x}\)
\(=\frac{10}{2x+1}\)
b) ĐK : $x\neq 0;-1$
\(\left(\frac{1}{x^2+x}-\frac{2-x}{x+1}\right):\left(\frac{1}{x}+x-2\right)=\left(\frac{1}{x(x+1)}-\frac{x(2-x)}{x(x+1)}\right):\frac{1+x^2-2x}{x}\)
\(=\frac{1-2x+x^2}{x(x+1)}.\frac{x}{1+x^2-2x}=\frac{x}{x(x+1)}=\frac{1}{x+1}\)
Bài 3:
a) ĐKXĐ: \(x\neq \pm 1\)
b)
\(A=\left(\frac{x+1}{2x-2}-\frac{3}{1-x^2}-\frac{x+3}{2x+2}\right).\frac{4x^2-4}{5}\)
\(=\left[\frac{(x+1)^2}{2(x-1)(x+1)}+\frac{6}{2(x-1)(x+1)}-\frac{(x+3)(x-1)}{2(x+1)(x-1)}\right].\frac{4(x^2-1)}{5}\)
\(=\frac{(x+1)^2+6-(x^2+2x-3)}{2(x-1)(x+1)}.\frac{4(x-1)(x+1)}{5}\)
\(=\frac{10}{2(x-1)(x+1)}.\frac{4(x-1)(x+1)}{5}=4\)
Bài 1:
\(\frac{ab}{(a-c)(b-c)}+\frac{bc}{(b-a)(c-a)}+\frac{ca}{(c-b)(a-b)}=\frac{-ab}{(c-a)(b-c)}+\frac{-bc}{(a-b)(c-a)}+\frac{-ca}{(b-c)(a-b)}\)
\(=\frac{-ab(a-b)}{(a-b)(b-c)(c-a)}+\frac{-bc(b-c)}{(a-b)(b-c)(c-a)}+\frac{-ca(c-a)}{(a-b)(b-c)(c-a)}\)
\(=\frac{-ab(a-b)-bc(b-c)-ca(c-a)}{(a-b)(b-c)(c-a)}=\frac{-(a^2b+b^2c+c^2a)+(ab^2+bc^2+ca^2)}{-(a^2b+b^2c+c^2a)+(ab^2+bc^2+ca^2)}=1\)
Bài 2:
Ta có:
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)
\(\Leftrightarrow \frac{a+b}{ab}+\frac{1}{c}-\frac{1}{a+b+c}=0\)
\(\Leftrightarrow \frac{a+b}{ab}+\frac{a+b}{c(a+b+c)}=0\)
\(\Leftrightarrow (a+b).\frac{c(a+b+c)+ab}{abc(a+b+c)}=0\)
\(\Leftrightarrow (a+b).\frac{(c+a)(c+b)}{abc(a+b+c)}=0\Rightarrow (a+b)(b+c)(c+a)=0\)
\(\Rightarrow \left[\begin{matrix} a+b=0\\ b+c=0\\ c+a=0\end{matrix}\right.\)
Không mất tổng quát giả sử $a+b=0$
Khi đó:
\(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{1}{a^3}+\frac{1}{(-a)^3}+\frac{1}{c^3}=\frac{1}{c^3}(1)\)
\(\frac{1}{a^3+b^3+c^3}=\frac{1}{a^3+(-a)^3+c^3}=\frac{1}{c^3}(2)\)
Từ \((1);(2)\Rightarrow \frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{1}{a^3+b^3+c^3}\) (đpcm)
a) ĐKXĐ : \(\hept{\begin{cases}a\ne0\\a\ne-1\\a\ne1\end{cases}}\)
Khi đó P = \(\left[\frac{2}{3a}-\frac{2}{a+1}\left(\frac{a+1}{3a}-a-1\right)\right]:\frac{a-1}{a}\)
\(=\left[\frac{2}{3a}-\frac{2}{a+1}.\frac{a+1}{3a}+\frac{2}{a+1}.\left(a+1\right)\right]:\frac{a-1}{a}\)
\(=\left(\frac{2}{3a}-\frac{2}{3a}+2\right):\frac{a-1}{a}=2:\frac{a-1}{a}=\frac{2a}{a-1}\)
b) Ta có P = \(\frac{2a}{a-1}=\frac{2a-2+2}{a-1}=2+\frac{2}{a-1}\)
\(P\inℤ\Leftrightarrow2⋮a-1\Leftrightarrow a-1\inƯ\left(2\right)=\left\{1;2;-1;-2\right\}\)
<=> \(a\in\left\{2;3;0;-1\right\}\)
c) Để P \(\le1\)
<=> \(\frac{2a}{a-1}\le1\)
<=> \(\frac{a+1}{a-1}\le0\)
Xét 2 trường hợp
TH1 : \(\hept{\begin{cases}a+1\ge0\\a-1\le0\end{cases}}\Leftrightarrow-1\le a\le1\)
Kết hợp điều kiện => -1 < a < 1 (a \(\ne0\))
TH2 : \(\hept{\begin{cases}a+1\le0\\a-1\ge0\end{cases}}\Leftrightarrow a\in\varnothing\)
Vậy - 1 < a < 1 (a \(\ne0\))
a/\(x\ne\left(+-1,+-\sqrt{2},0\right)\)
\(P=\frac{x^3+x^2-x-1}{x-1}.\frac{x^3-x^2-x+1}{x+1}:\frac{x\left(x-1\right)^2\left(x+1\right)^2}{x^2-2}\)
\(\Leftrightarrow P=\frac{x^2\left(x+1\right)-\left(x+1\right)}{x-1}.\frac{x^2\left(x-1\right)-\left(x-1\right)}{x+1}.\frac{x^2-2}{x\left(x-1\right)^2\left(x+1\right)^2}\)
\(\Leftrightarrow P=\frac{\left(x-1\right)\left(x+1\right)^2}{x-1}.\frac{\left(x+1\right)\left(x-1\right)^2}{x+1}.\frac{x^2-2}{x\left(x-1\right)^2\left(x+1\right)^2}\)
\(\Leftrightarrow P=\frac{x^2-2}{x}\)
\(P=\frac{x^2-2}{x}=x-\frac{2}{x}\)
Để P nguyên thì \(-2⋮x\Rightarrow x\inƯ\left(-2\right)\Rightarrow x=\left(+-1,+-2\right)\)
b) với mọi a,b,c ϵ R và x,y,z ≥ 0 có :
\(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\left(1\right)\)
Dấu ''='' xảy ra ⇔\(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)
Thật vậy với a,b∈ R và x,y ≥ 0 ta có:
\(\frac{a^2}{x}=\frac{b^2}{y}\ge\frac{\left(a+b\right)^2}{x+y}\left(2\right)\)
⇔\(\frac{a^2y}{xy}+\frac{b^2x}{xy}\ge\frac{\left(a+b\right)^2}{x+y}\)
⇔\(\frac{a^2y+b^2x}{xy}\ge\frac{\left(a+b\right)^2}{x+y}\)
⇔\(\frac{a^2y+b^2x}{xy}.\left(x+y\right)xy\ge\frac{\left(a+b\right)^2}{x+y}.\left(x+y\right)xy\)
⇔\(\left(a^2y+b^2x\right)\left(x+y\right)\ge\left(a+b\right)^2xy\)
⇔\(a^2xy+b^2x^2+a^2y^2+b^2xy\ge a^2xy+2abxy+b^2xy\)
⇔\(b^2x^2+a^2y^2-2abxy\ge0\)
⇔\(\left(bx-ay\right)^2\ge0\)(luôn đúng )
Áp dụng BĐT (2) có:
\(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b\right)^2}{x+y}+\frac{c^2}{z}=\frac{\left(a+b+c\right)^2}{x+y+z}\)
Dấu ''='' xảy ra ⇔\(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)
Ta có:
\(\frac{1}{a^3\left(b+c\right)}+\frac{1}{b^3\left(c+a\right)}+\frac{1}{c^3\left(a+b\right)}
\)
= \(\frac{1}{a^2}.\frac{1}{ab+ac}+\frac{1}{b^2}.\frac{1}{bc+ac}+\frac{1}{c^2}.\frac{1}{ac+bc}\)
=\(\frac{\frac{1}{a^2}}{ab+ac}+\frac{\frac{1}{b^2}}{bc+ab}+\frac{\frac{1}{c^2}}{ac+bc}\)
Áp dụng BĐT (1) ta có:
\(\frac{\frac{1}{a^2}}{ab+ac}+\frac{\frac{1}{b^2}}{bc+ab}+\frac{\frac{1}{c^2}}{ac+bc}\ge\frac{\left(\frac{1}{a}+\frac{1}{b}++\frac{1}{c}\right)^2}{2\left(ab+bc+ac\right)}\)
Mà abc=1⇒\(\left\{{}\begin{matrix}ab=\frac{1}{c}\\bc=\frac{1}{a}\\ac=\frac{1}{b}\end{matrix}\right.\)
\(\frac{\frac{1}{a^2}}{ab+ac}+\frac{\frac{1}{b^2}}{bc+ac}+\frac{\frac{1}{c^2}}{ac+bc}\ge\frac{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}{2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)}\)
\(\frac{\frac{1}{a^2}}{ab+ac}+\frac{\frac{1}{b^2}}{bc+ac}+\frac{\frac{1}{c^2}}{ac+bc}\ge\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Có \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}=3\sqrt[3]{\frac{1}{1}}=3\)( BĐT cosi )
⇒\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\)
⇒\(\frac{\frac{1}{a^2}}{ab+ac}+\frac{\frac{1}{b^2}}{bc+ac}+\frac{\frac{1}{c^2}}{ac+bc}\ge\frac{1}{2}.3=\frac{3}{2}\)
Vậy \(\frac{1}{a^3\left(b+c\right)}+\frac{1}{b^3\left(c+a\right)}+\frac{1}{c^3\left(a+b\right)}\ge\frac{3}{2}\)
Chúc bạn học tốt !!!
a) \(P=\left[\frac{2}{3a}-\frac{2}{a+1}\cdot\left(\frac{a+1}{3a}-a-1\right)\right]:\frac{a-1}{a}\)
\(P=\left[\frac{2}{3a}-\frac{2}{a+1}\cdot\left(\frac{a+1-3a^2-3a}{3a}\right)\right]\cdot\frac{a}{a-1}\)
\(P=\left[\frac{2}{3a}-\frac{2}{a+1}\cdot\frac{-3a^2-2a+1}{3a}\right]\cdot\frac{a}{a-1}\)
\(P=\left[\frac{2}{3a}-\frac{2}{a+1}\cdot\frac{\left(a+1\right)\left(-3a+1\right)}{3a}\right]\cdot\frac{a}{a-1}\)
\(P=\left[\frac{2-2\left(-3a+1\right)}{3a}\right]\cdot\frac{a}{a-1}\)
\(P=\frac{6a}{3a}\cdot\frac{a}{a-1}=\frac{2a}{a-1}\)
Vậy...
b) \(2a⋮\left(a-1\right)\)
\(\Leftrightarrow2\left(a-1\right)+2⋮\left(a-1\right)\)
Do đó \(2⋮\left(a-1\right)\)
\(\Rightarrow\left(a-1\right)\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
\(\Leftrightarrow a\in\left\{2;0;3;-1\right\}\)
Mà \(a\ne0;1\) \(\Rightarrow a\in\left\{-1;2;3\right\}\)
Vậy...
c) \(\frac{2a}{a-1}\le1\)
\(\Leftrightarrow\frac{2a}{a-1}-1\le0\)
\(\Leftrightarrow\frac{2a-a+1}{a-1}\le0\)
\(\Leftrightarrow\frac{a+1}{a-1}\le0\)
\(\Leftrightarrow\left(a+1\right)\left(a-1\right)\le0\)
\(\Leftrightarrow-1\le a\le1\)
Vậy....