Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
Đường thẳng có hệ số góc 3 nên nhận (3;-1) là 1 vtpt
\(\Rightarrow3\left(x-1\right)-1\left(y+2\right)=0\Leftrightarrow3x-y-5=0\)
b.
Đường thẳng có 1 vtcp là (2;-5) nên nhận (5;2) là 1 vtpt
Phương trình: \(5\left(x+5\right)+2\left(y-2\right)=0\Leftrightarrow5x+2y+21=0\)
c.
Đường thẳng vuông góc \(\Delta\) nên nhận \(\left(4;-3\right)\) là 1 vtpt
Phương trình: \(4x-3y=0\)
d.
Đường thẳng hợp với 2 trục tọa độ 1 tam giác cân nên có hệ số góc bằng 1 hoặc -1
\(\Rightarrow\) Nhận (1;1) hoặc (1;-1) là vtpt
Có 2 đường thẳng thỏa mãn:
\(\left[{}\begin{matrix}1\left(x-4\right)+1\left(y-5\right)=0\\1\left(x-4\right)-1\left(y-5\right)=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x+y-9=0\\x-y+1=0\end{matrix}\right.\)
a: MN lớn nhất
=>MN là đường kính
=>Δ: y=ax+b đi qua A(3;0) và I(-1;2)
Ta có hệ pt:
3a+b=0 và -a+b=2
=>a=-1/2 và b=1/2
b: Kẻ IH vuông góc MN
MN nhỏ nhất khi H trùng với A
=>vecto IA=(4;-2)
Δ có phương trình là:
4(x-3)+(-2)(y-0)=0
=>4x-12-2y=0
a) Ta có = (2; -5). Gọi M(x; y) là 1 điểm nằm trên đường thẳng AB thì AM = (x - 1; y - 4). Ba điểm A, B, M thẳng hàng nên hai vec tơ và cùng phương, cho ta:
= <=> 5x + 2y -13 = 0
Đó chính là phương trình đường thẳng AB.
Tương tự ta có phương trình đường thẳng BC: x - y -4 = 0
phương trình đường thẳng CA: 2x + 5y -22 = 0
b) Đường cao AH là đường thẳng đi qua A(1; 4) và vuông góc với BC.
= (3; 3) => ⊥ nên nhận vectơ = (3; 3) làm vectơ pháp tuyến và có phương trình tổng quát:
AH : 3(x - 1) + 3(y -4) = 0
3x + 3y - 15 = 0
=> x + y - 5 = 0
Gọi M là trung điểm BC ta có M \(\left(\dfrac{9}{2};\dfrac{1}{2}\right)\)
Trung tuyến AM là đường thẳng đi qua hai điểm A, M. Theo các viết phương trình đường thẳng đi qua hai điểm trong câu a) ta viết được:
AM : x + y - 5 = 0
a) Phương trình tổng quát của đường thẳng d đi qua điểm \(A\left( { - 3;2} \right)\) và có một vectơ pháp tuyến là \(\overrightarrow n = \left( {2; - 3} \right)\) là: \(2\left( {x + 3} \right) - 3\left( {y - 2} \right) = 0 \Leftrightarrow 2x - 3y+12 = 0\)
Do vecto pháp tuyến là \(\overrightarrow n = (2; - \;3) \Rightarrow \overrightarrow u = (3;2)\)
Từ đó ta có phương trình tham số của đường thẳng d là:
\(\left\{ \begin{array}{l}x = - \;3 + 3t\\y = 2 + 2t\end{array} \right.\)\((t \in \mathbb{R})\)
b) Phương trình tham số của đường thẳng d đi qua điểm \(B\left( { - 2; - 5} \right)\) và có một vectơ chỉ phương là \(\overrightarrow u = \left( { - 7;6} \right)\) là: \(\left\{ \begin{array}{l}x = - 2 - 7t\\y = - 5 + 6t\end{array} \right.\left( {t \in \mathbb{R}} \right)\).
Từ đó ta có phương trình tổng quát của đường thẳng d là: \(\frac{{x + 2}}{{ - 7}} = \frac{{y + 5}}{6} \Leftrightarrow 6x + 7y + 47 = 0\).
c) Phương trình tổng quát của đường thẳng đi qua hai điểm \(C\left( {4;3} \right),D\left( {5;2} \right)\) là: \(\frac{{x - 4}}{{5 - 4}} = \frac{{y - 3}}{{2 - 3}} \Leftrightarrow x + y - 7 = 0\)
Từ đó ta có phương trình tham số của đường thẳng d là: \(\left\{ \begin{array}{l}x = 7 - t\\y = t\end{array} \right.{\rm{ }}\left( {t \in \mathbb{R}} \right)\) .
Đường tròn (C) có tâm \(I\left(1;2\right)\) và có bán kính \(R=2\)
a.Phương trình d: \(\left\{{}\begin{matrix}x=1+t\\y=-2-2t\end{matrix}\right.\)
b. Gọi H là trung điểm AB \(\Rightarrow H\left(\dfrac{1}{2};1\right)\)
\(\overrightarrow{BA}=\left(1;-6\right)\Rightarrow\) trung trực AB nhận \(\left(6;1\right)\) là 1 vtcp
Phương trình: \(\left\{{}\begin{matrix}x=\dfrac{1}{2}+6t\\y=1+t\end{matrix}\right.\)
c. \(\overrightarrow{BA}=\left(1;-6\right)\) nên AB nhận (1;-6) là 1 vtcp
Phương trình AB: \(\left\{{}\begin{matrix}x=1+t\\y=-2-6t\end{matrix}\right.\)
d. Gọi M là trung điểm AC \(\Rightarrow M\left(\dfrac{7}{2};\dfrac{1}{2}\right)\) \(\Rightarrow\overrightarrow{MH}=\left(3;-\dfrac{1}{2}\right)=\dfrac{1}{2}\left(6;-1\right)\)
Phương trình MH: \(\left\{{}\begin{matrix}x=\dfrac{7}{2}+6t\\y=\dfrac{1}{2}-t\end{matrix}\right.\)