Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ gt suy ra :\(0=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}-\left(\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\right)=\left(\frac{x^2}{a^2+b^2+c^2}-\frac{x^2}{a^2}\right)+\left(\frac{y^2}{a^2+b^2+c^2}-\frac{y^2}{b^2}\right)+\left(\frac{z^2}{a^2+b^2+c^2}-\frac{z^2}{c^2}\right)\)
\(=x^2\left(\frac{1}{a^2+b^2+c^2}-\frac{1}{a^2}\right)+y^2\left(\frac{1}{a^2+b^2+c^2}-\frac{1}{b^2}\right)+z^2\left(\frac{1}{a^2+b^2+c^2}-\frac{1}{c^2}\right)\left(1\right)\)
Vì\(a^2,b^2,c^2\ne0\Rightarrow a^2,b^2,c^2>0\Rightarrow a^2+b^2+c^2>a^2;b^2;c^2\)
Thấy rằng trong mỗi dẫu ngoặc,phân thức đầu nhỏ hơn phân thức sau nên mỗi biểu thức trong dấu ngoặc đều âm mà a2,b2,c2 ko âm nên tổng (1) bằng 0 chỉ khi x2 = y2 = z2 = 0 <=> x = y = z = 0.Thay x,y,z = 0 vào 2 vế của đẳng thức cần chứng minh,ta có 2 vế bằng nhau (bằng 0) (đpcm)
Ta có:
\(A=\frac{1}{\left(x+y\right)^3}\left(\frac{1}{x^4}-\frac{1}{y^4}\right)=\frac{1}{\left(x+y\right)^3}.\frac{\left(y^2+x^2\right)\left(x+y\right)\left(y-x\right)}{x^4y^4}=\frac{\left(x^2+y^2\right)\left(y-x\right)}{\left(x+y\right)^2x^4y^4}\)
\(B=\frac{1}{\left(x+y\right)^4}.\left(\frac{1}{x^3}-\frac{1}{y^3}\right)=\frac{\left(y-x\right)\left(y^2+xy+x^2\right)}{\left(x+y\right)^4x^3y^3}\)
\(C=\frac{1}{\left(x+y\right)^5}\left(\frac{1}{x^2}-\frac{1}{y^2}\right)=\frac{y-x}{\left(x+y\right)^4x^2y^2}\)
\(\Rightarrow A+B+C=\frac{\left(x^2+y^2\right)\left(y-x\right)}{\left(x+y\right)^2x^4y^4}+\frac{\left(y-x\right)\left(x^2+xy+y^2\right)}{\left(x+y\right)^4x^3y^3}+\frac{\left(y-x\right)}{\left(x+y\right)^4x^2y^2}\)
\(=\frac{y^3-x^3}{x^4y^4\left(x+y\right)^2}\)
b/ Thế vô rồi tính nhé
Đoạn gần cuối thay y-x= 1 luôn
\(A+B+C=\frac{x^2+y^2}{\left(x+y\right)^2x^4y^4}+\left(\frac{\left(x+y\right)^2}{\left(x+y\right)^4\left(xy\right)^3}\right)\\ \)
\(A+B+C=\frac{x^2+y^2}{\left(x+y\right)^2\left(xy\right)^4}+\frac{1}{\left(x+y\right)^2\left(xy\right)^3}\)
\(A+B+C=\frac{x^2+y^2+xy}{\left[\left(x+y\right)xy\right]^2\left(xy\right)^2}\) giờ mới thay không biết đã tối giản chưa
2b)\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a+b+c}\)
<=> \(\dfrac{ab+bc+ca}{abc}=\dfrac{1}{a+b+c}\)
<=> (ab+bc+ca)(a+b+c)=abc
<=> (ab+bc+ca)(a+b+c)-abc=0
<=> (a+b)(b+c)(c+a) = 0
<=> a+b=0 hoặc b+c=0 hoặc c+a=0
<=> a=-b hoặc b=-c hoặc c = -a
sau đó thay vào cái cần c/m
Em tham khảo tại đây nhé.
Câu hỏi của Phạm Minh Tuấn - Toán lớp 8 - Học toán với OnlineMath
Còn bài số 2 thì sao cô??