Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,x-\dfrac{3}{4}=\dfrac{1}{7}\\ x=\dfrac{1}{7}+\dfrac{3}{4}\\ x=\dfrac{25}{28}\\ b,x+\dfrac{7}{5}=\dfrac{9}{8}.\dfrac{4}{27}\\ x+\dfrac{7}{5}=\dfrac{1}{6}\\ x=\dfrac{1}{6}-\dfrac{7}{5}\\ x=\dfrac{-37}{30}\\ c,\dfrac{2}{5}-\dfrac{3}{7}=\dfrac{x}{70}\\ \dfrac{-1}{35}=\dfrac{x}{70}\\ \dfrac{-2}{70}=\dfrac{x}{70}\\ x=-2\\ d,\dfrac{2}{9}-\dfrac{7}{8}.x=1\\ \dfrac{7}{8}.x=\dfrac{2}{9}-1\\ \dfrac{7}{8}.x=\dfrac{-7}{9}\\ x=\dfrac{-7}{9}:\dfrac{7}{8}\\ x=\dfrac{-8}{9}\)
\(a,x-\dfrac{3}{4}=\dfrac{1}{7}\)
\(\Rightarrow x=\dfrac{1}{7}+\dfrac{3}{4}\)
\(\Rightarrow x=\dfrac{25}{28}\)
\(b,x+\dfrac{7}{5}=\dfrac{9}{8}.\dfrac{4}{27}\)
\(\Rightarrow x+\dfrac{7}{5}=\dfrac{1}{6}\)
\(\Rightarrow x=\dfrac{1}{6}-\dfrac{7}{5}\)
\(\Rightarrow x=-\dfrac{37}{30}\)
\(c,\dfrac{2}{5}-\dfrac{3}{7}=\dfrac{x}{70}\)
\(\Rightarrow\dfrac{-1}{35}=\dfrac{x}{70}\)
\(\Rightarrow35x=-70\)
\(\Rightarrow x=-2\)
\(d,\dfrac{2}{9}-\dfrac{7}{8}.x=1\)
\(\Rightarrow\dfrac{7}{8}x=\dfrac{2}{9}-1\)
\(\Rightarrow\dfrac{7}{8}x=-\dfrac{7}{9}\)
\(\Rightarrow x=-\dfrac{8}{9}\)
b.(a+b)-(b-a)+c=2a+c
Xét VT: (a+b)-(b-a)+c = a + b - b + a + c = 2a+c
Mà VP = 2a+c
=> VT = VP
c.-(a+b-c)+(a-b-c)=-2b
Xét VT: -(a+b-c)+(a-b-c) = -a - b + c + a - b - c = -2b
Mà VP = -2b
=> VT = VP
d.a(b+c)-a(b+d)=a(c-d)
Xét VT: a(b+c)-a(b+d) = ab + ac - ab - ad = ac - ad = a(c-d)
Mà VP = a(c-d)
=> VT = VP
e.a(b-c)+a(d+c)=a(b+d)
Xét VT: a(b-c)+a(d+c)= ab -ac + ad + ac = ab + ad = a(b+d)
Mà VP = a(b+d)
=> VT = VP
a: =-5/7(2/11+9/11)+12/7
=12/7-5/7
=7/7=1
b: \(=\dfrac{-12}{56}+\dfrac{35}{56}-\dfrac{28}{56}=\dfrac{-5}{56}\)
c: \(=\dfrac{1}{4}-\dfrac{5}{13}+\dfrac{2}{11}-\dfrac{8}{13}+\dfrac{3}{4}\)
=1-1+2/11
=2/11
d: \(=\dfrac{21}{31}+\dfrac{-16}{7}+\dfrac{44}{53}+\dfrac{10}{31}+\dfrac{9}{53}\)
=1+1-16/7
=-2/7
e: \(=\dfrac{\dfrac{4}{36}-\dfrac{30}{36}-\dfrac{144}{36}}{\dfrac{21}{36}-\dfrac{1}{36}-\dfrac{360}{36}}=\dfrac{-160}{-340}=\dfrac{8}{17}\)
a) \(\left|x\right|< 1\Rightarrow-1< x< 1\Rightarrow x=0\)
b) \(\left|x+3\right|=0\)
\(\Leftrightarrow x+3=0\)
\(\Leftrightarrow x=-3\)
c) \(\left|x+2\right|=\left|12-10\right|\)
\(\Leftrightarrow\left|x+2\right|=2\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=-2\\x+2=2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\left(-2\right)-2\\x=2-2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=0\end{matrix}\right.\)
d) \(\left|x+3\right|=2x-2\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-2\ge0\\\left[{}\begin{matrix}x+3=2x-2\\x+3=\left(-2x\right)+2\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x\ge2\\\left[{}\begin{matrix}x-2x=-2-3\\x-\left(-2x\right)=2-3\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge1\\\left[{}\begin{matrix}-x=-5\\3x=-1\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge1\\\left[{}\begin{matrix}x=5\left(tm\right)\\x=\dfrac{-1}{3}\end{matrix}\right.\end{matrix}\right.\)
Vì \(\dfrac{-1}{3}< 1\) nên \(x=5\) thỏa mãn đề bài.
e) \(\left|x+1\right|>4\)
\(\Rightarrow\left[{}\begin{matrix}x+1>4\\x+1< 4\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x>3\\x< 3\end{matrix}\right.\)
f) \(\left|x-3\right|=\left|2x-1\right|\)
(cho thời gian suy nghĩ, mình chưa làm dạng này bao giờ)
g) \(\left|2x-1\right|-1+2x=0\)
\(\Rightarrow\left|2x-1\right|=-2x+1\)
Mà \(\left|2x-1\right|=\left|-2x+1\right|\)
\(\Rightarrow\left|-2x+1\right|=-2x+1\)
\(\Rightarrow-2x+1\ge0\)
\(\Rightarrow-2x\ge-1\)
\(\Rightarrow x\ge\dfrac{-1}{-2}=\dfrac{1}{2}\)
h) \(\left|3-2x\right|=2x-3\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-3\ge0\\\left[{}\begin{matrix}3-2x=2x-3\\3-2x=-2x+3\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x\ge3\\\left[{}\begin{matrix}3+3=2x+2x\\3-3=-2x+2x\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{3}{2}\\\left[{}\begin{matrix}6=4x\\0=0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{3}{2}\\\left[{}\begin{matrix}x=\dfrac{3}{2}\\0=0\end{matrix}\right.\end{matrix}\right.\)
Vì \(0=0\) luôn đúng nên ta có \(x=\dfrac{3}{2}\)
j) \(\left|x+1\right|+\left|x+2\right|+\left|x+3\right|+\left|x+4\right|=5x\)
(đầu hàng)
2.
Theo đề bài ta có
480 \(⋮\) a
600 \(⋮\) a
a lớn nhất
\(\Rightarrow\) a \(\in\) ƯCLN ( 480 ; 600 )
480 = 25 . 3 .5
600 = 23 . 3 . 52
a \(\in\){ 480 ; 600 } = 23 . 3 . 5 = 120
6.
Gọi số người tham gia buổi đồng diễn là a ( a \(\in\) N* )
Theo đề bài ta có
350 < a < 400
a \(⋮\) 5
a\(⋮\) 6
a\(⋮\) 8
\(\Rightarrow\) a \(\in\) BC ( 5 ; 6 ; 8 ) , 350 < a < 400
5 = 5
6 = 2 . 3
8 = 23
BCNN ( 5 ; 6 ; 8 ) = 5 . 23 . 3 = 120
a \(\in\) BC ( 5; 6 ; 8 ) = B ( 120 ) = { 0 ; 120 ; 240 ; 360 ; 480 ; 600 ...}
mà 350 < a < 400
\(\Rightarrow\) a \(\in\) { 360 }
Vậy số người tham gia buổi đồng diễn là 360 người
trời nhìn sơ mà chả hiểu gì hết
Bài 1:
a)|x+1|-5=20-(-5)
\(\Leftrightarrow\)|x+1|=30
\(\Leftrightarrow\)\(\left[{}\begin{matrix}x+1=30\\x+1=-30\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=29\\x=-31\end{matrix}\right.\)
Vậy x=29 hoặc x=-31.
b)(-7)-|x+1|=32+(-11)
\(\Leftrightarrow\)|x+1|=28
\(\Leftrightarrow\left[{}\begin{matrix}x+1=28\\x+1=-28\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=27\\x=-29\end{matrix}\right.\)
Vậy x=27 hoặc x=-29.