Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
áp dụng bđt cauchy-shwarz dạng engel
\(\text{ Σ}_{cyc}\frac{a^2}{b+c}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}\)\(=\frac{a+b+c}{2}\)
Ta có hđt \(\text{ Σ}_{cyc}a^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)
Mà a+b+c khác 0 nên a = b = c
\(\Rightarrow N=1\)
Bài 1: a) Đặt x2+x+3 = t (t>0) , ta có: t(t+1)-12=0
<=> (t-3)(t+4)=0
<=> t=3 (vì t>0)
=> x2+x+3=3 <=> x2+x=0 <=> x=0,x=-1
2) a) \(\frac{x^2-5x+1}{2x+1}+2=-\frac{x^2-4x+1}{x+1}\) (ĐKXĐ: \(x\ne-\frac{1}{2};-1\))
+) x = \(-\frac{2}{3}\), thay vào đề không TM
+ x\(\ne-\frac{2}{3}\)
Từ đề \(\Rightarrow\frac{x^2-5x+1+4x+2}{2x+1}=\frac{-x^2+4x-1}{x+1}\)
\(\Leftrightarrow\frac{x^2-x+3}{2x+1}=\frac{-x^2+4x-1}{x+1}=\frac{\left(x^2-x+3\right)+\left(-x^2+4x-1\right)}{\left(2x+1\right)+\left(x+1\right)}\) \(=\frac{3x+2}{3x+2}=1\)
\(\Rightarrow x^2-x+3=2x+1\)
\(\Leftrightarrow x^2-3x+2=0\)
\(\Leftrightarrow\left(x-\frac{3}{2}\right)^2=\frac{1}{4}\)
\(\Rightarrow\left[\begin{matrix}x-\frac{3}{2}=\frac{1}{2}\\x-\frac{3}{2}=-\frac{1}{2}\end{matrix}\right.\)\(\Leftrightarrow\left[\begin{matrix}x=2\\x=1\end{matrix}\right.\)
Vậy ...
a) \(ĐKXĐ:x\ne\pm3\)
\(A=\frac{5}{x+3}-\frac{2}{3-x}+\frac{3x^2-2x-9}{x^2-9}\)
\(\Leftrightarrow A=\frac{5\left(x-3\right)+2\left(x+3\right)-3x^2+2x+9}{\left(x-3\right)\left(x+3\right)}\)
\(\Leftrightarrow A=\frac{5x-15+2x+6-3x^2+2x+9}{\left(x-3\right)\left(x+3\right)}\)
\(\Leftrightarrow A=\frac{-3x^2+9x}{\left(x-3\right)\left(x+3\right)}\)
\(\Leftrightarrow A=\frac{-3x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}\)
\(\Leftrightarrow A=\frac{-3x}{x+3}\)
b) Khi \(\left|x-2\right|=1\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=1\\2-x=1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=3\left(ktm\right)\\x=1\left(tm\right)\end{cases}}\)
Thay x = 1 vào A, ta được :
\(A=\frac{-3}{1+3}=\frac{-3}{4}\)
Vậy khi \(\left|x-2\right|=1\Leftrightarrow A=-\frac{3}{4}\)
c) Để \(A\inℤ\)
\(\Leftrightarrow\frac{-3x}{x+3}\inℤ\)
\(\Leftrightarrow-3x⋮x+3\)
\(\Leftrightarrow-3\left(x+3\right)+9⋮x+3\)
\(\Leftrightarrow9⋮x+3\)
\(\Leftrightarrow x+3\inƯ\left(9\right)=\left\{\pm1;\pm3;\pm9\right\}\)
\(\Leftrightarrow x\in\left\{-2;-4;0;-6;-12;6\right\}\)
Vậy để \(A\inℤ\Leftrightarrow x\in\left\{-2;-4;0;-6;-12;6\right\}\)