K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 10 2017

Bài 1 :

a, \(-1\dfrac{2}{3}\)= \(\dfrac{-5}{3}\)

Dựa vào tính chất của Tỉ lệ thức :

Ta có : \(\dfrac{x}{y}=\dfrac{-5}{3}\rightarrow\dfrac{x}{-5}=\dfrac{y}{3}\)

Dựa vào tính chất của dãy tỉ số = nhau

Ta có : \(\dfrac{x}{-5}=\dfrac{y}{3}=\dfrac{x+y}{\left(-5\right)+3}=\dfrac{18}{-2}=-9\)

\(\rightarrow\dfrac{x}{-5}=-9\rightarrow x=\left(-5\right).\left(-9\right)\Rightarrow x=45\\ \rightarrow\dfrac{y}{3}=-9\rightarrow y=3.\left(-9\right)\Rightarrow y=-27\)b,

Ta có :

( x + 4 ) . 7 = ( y + 7 ) . 4

\(\rightarrow\) 7x + 28 = 4y + 28

\(\rightarrow\) 7x = 4y

Vì 7x = 4y

\(\Rightarrow\) x = 22 / ( 4 + 7 ) . 7 = 14

\(\Rightarrow\) y = 22 - 14 = 8

Đợi mk lm câu 2 nha

8 tháng 10 2017

hỏi huy dài lắm hôm qua mới nhắn xong ở đây lộ hết

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

Ta có: \(\dfrac{4a+3c}{4b+3d}=\dfrac{4bk+3dk}{4b+3d}=k\)

\(\dfrac{4a-3c}{4b-3d}=\dfrac{4bk-3dk}{4b-3d}=k\)

Do đó: \(\dfrac{4a+3c}{4b+3d}=\dfrac{4a-3c}{4b-3d}\)

14 tháng 10 2021

a, Áp dụng t/c dtsbn:

\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\Rightarrow\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\)

b, Áp dụng t/c dtsbn:

\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{2a}{2c}=\dfrac{5b}{5d}=\dfrac{3a}{4c}=\dfrac{4b}{4d}=\dfrac{2a+5b}{2c+5d}=\dfrac{3a-4b}{3c-4d}\Rightarrow\dfrac{2a+5b}{3a-4b}=\dfrac{2c+5d}{3c-4d}\)

 

 

14 tháng 10 2021

c, Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow a=bk;c=dk\)

Ta có \(\dfrac{ab}{cd}=\dfrac{bk\cdot b}{dk\cdot d}=\dfrac{b^2k}{d^2k}=\dfrac{b^2}{d^2}\)

\(\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}=\dfrac{\left(bk-b\right)^2}{\left(dk-d\right)^2}=\dfrac{b^2\left(k-1\right)^2}{d^2\left(k-1\right)^2}=\dfrac{b^2}{d^2}\)

Do đó \(\dfrac{ab}{cd}=\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}\)

d, Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow a=bk;c=dk\)

Ta có \(\dfrac{ac}{bd}=\dfrac{bk\cdot dk}{bd}=k^2\)

\(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{b^2k^2+d^2k^2}{b^2+d^2}=\dfrac{k^2\left(b^2+d^2\right)}{b^2+d^2}=k^2\)

Do đó \(\dfrac{ac}{bd}=\dfrac{a^2+c^2}{b^2+d^2}\)

22 tháng 3 2023

Áp dụng t/c của DTSBN , ta có :

+, \(\dfrac{x}{a+2b+c}=\dfrac{y}{2a+b-c}=\dfrac{z}{4a-4b+c}\\ =\dfrac{x+2y+z}{a+2b+c+2\left(2a+b-c\right)+4a-4b+c}\\ =\dfrac{x+2y+z}{a+2b+c+4a+2b-2a-2c+4a-4b+c}\\ =\dfrac{x+2y+z}{\left(a+4a+4a\right)+\left(2b+2b-4b\right)+\left(c-2c+c\right)}\\ =\dfrac{x+2y+z}{9a}\left(1\right)\)

+, \(\dfrac{x}{a+2b+c}=\dfrac{y}{2a+b-c}=\dfrac{z}{4a-4b+c}\\ =\dfrac{2x+y-z}{2\left(a+2b+c\right)+2a+b-c-4a+4b+c}\\ =\dfrac{2x+y-z}{2a+4b+2c+2a+b-c-4a+4b+c}\\ =\dfrac{2x+y-z}{\left(2a+2a-4a\right)+\left(4b+b+4b\right)+\left(2c-c+c\right)}\\ =\dfrac{2x+y-z}{9b}\left(2\right)\)

+, \(\dfrac{x}{a+2b+c}=\dfrac{y}{2a+b-c}=\dfrac{z}{4a-4b+c}\\ =\dfrac{4x-4y+z}{4\left(a+2b+c\right)-4\left(2a+b-c\right)++4a-4b+c}\\ =\dfrac{4x-4y+z}{4a+8b+4c-8a-4b+4c+4a-4b+c}\\ =\dfrac{4x-4y+z}{\left(4a-8a+4a\right)+\left(8b-4b-4b\right)+\left(4c+4c+c\right)}\\ =\dfrac{4x-4y+z}{9c}\left(3\right)\)

Từ (1);(2) và (3) 

\(\Rightarrow\dfrac{x+2y+z}{9a}=\dfrac{2a+y-z}{9b}=\dfrac{4x-4y+z}{9c}\\ \Rightarrow\dfrac{x+2y+z}{9a}\cdot9=\dfrac{2a+y-z}{9b}\cdot9=\dfrac{4x-4y+z}{9c}\cdot9\\ \Rightarrow\dfrac{x+2y+z}{a}=\dfrac{2a+y-z}{b}=\dfrac{4x-4y+z}{c}\\ \Rightarrow\dfrac{a}{a+2y+z}=\dfrac{b}{2a+y-z}=\dfrac{c}{4x-4y+z}\left(đpcm\right)\)

NV
22 tháng 3 2023

Đặt \(\dfrac{x}{a+2b+c}=\dfrac{y}{2a+b-c}=\dfrac{z}{4a-4b+c}=k\)

\(\Rightarrow\left\{{}\begin{matrix}x=k\left(a+2b+c\right)\\y=k\left(2a+b-c\right)\\z=k\left(4a-4b+c\right)\end{matrix}\right.\)

\(\Rightarrow\dfrac{a}{x+2y+z}=\dfrac{a}{k\left(a+2b+c\right)+2k\left(2a+b-c\right)+k\left(4a-4b+c\right)}=\dfrac{a}{k.9a}=\dfrac{1}{9k}\)

Tượng tự:

\(\dfrac{b}{2x+y-z}=\dfrac{b}{9bk}=\dfrac{1}{9k}\) ; \(\dfrac{c}{4x-4y+z}=\dfrac{c}{9k.c}=\dfrac{1}{9k}\)

\(\Rightarrow\dfrac{a}{x+2y+z}=\dfrac{b}{2x+y-z}=\dfrac{c}{4x-4y+z}\)