K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 4 2018

1/ a/ ta có:

m^4 ≥ 0 ; m^2 ≥ 0; m^4 ≥m^2 => m^4 - m^2 + 1 ≥ 0 (với mọi m)

b/ để 1 - 3/(p^2+1) nhỏ nhất thì 3/(p^2+1) nhỏ nhất và 3/(p^2+1) > 0 => p^2 + 1 là ước > 0 của 3

đặt A = 1 - 3/(p^2+1)

=> *) p^2+1 = 3 <=> p^2 = 2 <=> p = \(\pm\)√2 => A = 0

*) p^2 + 1 = 1 <=> p = 0 => A = -2

Vậy GTNN A = -2 khi p=0

23 tháng 4 2018

n^2 (n-p) = |m|

|m| ≥ 0; n^2 ≥ 0

=> n - p ≥ 0

=> n ≥ p ; theo đề phải có 1 số dương, 1 số 0, 1 số âm=>n >p

*)Nếu m = 0 => n^2 (n-p) = 0

=> n^2 = 0 => n = m=0 vô lí (loại)

hoặc n - p =0 => n = p vô lí (loại)

*) Nếu m là 1 số dương:

=> n^2 ( n-p) > 0 => n # 0 => p = 0 => n là số âm (vô lí)

*) Nếu m là 1 số âm:

=> n^2 ( n-p) > 0 => n # 0 => p = 0 => n là số dương (nhận)

Vậy m là số âm, n là số dương, p = 0

22 tháng 7 2019

#)Giải :

a) Để C/m a và b là hai số đối nhau => a + b = 0

Ta có : \(2\left(a^2+b^2\right)=\left(a-b\right)^2\)

\(\Leftrightarrow2a^2+2b^2=a^2-2ab+b^2\)

\(\Leftrightarrow2a^2+2b^2-a^2-2ab+b^2=0\)

\(\Leftrightarrow a^2+2ab+b^2=0\)

\(\Leftrightarrow\left(a+b\right)^2=0a\Leftrightarrow a+b=0\)

\(\Rightarrowđpcm\)

23 tháng 10 2020

đéo biết

24 tháng 10 2020

1) \(A=-2x^2-10y^2+4xy+4x+4y+2013=-2\left(x-y-1\right)^2-8\left(y-\frac{1}{2}\right)^2+2017\le2017\forall x,y\inℝ\)Đẳng thức xảy ra khi x = 3/2; y = 1/2

2) \(A=a^4-2a^3+2a^2-2a+2=\left(a^2+1\right)\left(a-1\right)^2+1\ge1\)

Đẳng thức xảy ra khi a = 1

3) \(N=\left(x-y\right)\left(x-2y\right)\left(x-3y\right)\left(x-4y\right)+y^4=\left(x^2-5xy+4y^2\right)\left(x^2-5x+6y^2\right)+y^4=\left(x^2-5xy+4y^2\right)^2+2y^2\left(x^2-5xy+4y^2\right)+y^4=\left(x^2-5xy+5y^2\right)^2\)(là số chính phương, đpcm)

4) \(a^3+b^3=3ab-1\Leftrightarrow\left(a+b\right)^3-3ab\left(a+b\right)-3ab+1=0\Leftrightarrow\left[\left(a+b\right)^3+1\right]-3ab\left(a+b+1\right)=0\)\(\Leftrightarrow\left(a+b+1\right)\left(a^2+2ab+b^2-a-b+1\right)-3ab\left(a+b+1\right)=0\Leftrightarrow\left(a+b+1\right)\left(a^2+b^2-ab-a-b+1\right)=0\)Vì a, b dương nên a + b + 1 > 0 suy ra \(a^2+b^2-ab-a-b+1=0\Leftrightarrow\left(a-b\right)^2+\left(a-1\right)^2+\left(b-1\right)^2=0\Leftrightarrow a=b=1\)

Do đó \(a^{2018}+b^{2019}=1+1=2\)

5) \(A=n^3+\left(n+1\right)^3+\left(n+2\right)^3=3n\left(n^2+5\right)+9\left(n^2+1\right)⋮9\)(Do số chính phương chia 3 dư 1 hoặc 0)

4 tháng 10 2019

2. Ta có: P = 2x2 + y2 - 4x - 4y + 10

P = 2(x2 - 2x + 1) + (y2 - 4y + 4) + 4

P = 2(x - 1)2 + (y - 2)2 + 4 \(\ge\)\(\forall\)x;y

=> P luôn dương với mọi biến x;y

3 Ta có:

(2n + 1)(n2 - 3n - 1) - 2n3 + 1

= 2n3 - 6n2 - 2n + n2 - 3n - 1 - 2n3 + 1

= -5n2 - 5n = -5n(n + 1) \(⋮\)\(\forall\)\(\in\)Z

20 tháng 4 2020

1×2=2

Cho một biểu thức, biết biểu thức là:\(\left[\left(a+b\right)^3+\left(c-d\right)^3-\left(a+c\right)^3-\left(b-d\right)^3\right]\left(mn\right)^2=63504.\)Các số cần tìm cho, biết:- TRC của 4 số a, b, c, d là 4,5. TRC của 2 số a và c là 5. a hơn c 2 đơn vị, d bằng \(\frac{1}{2}b\).- TRC của 4 số a, b, m, n là 5. Biết \(\frac{m}{a+c}=0,7\), tổng của a và b là a + b, tổng của m và n là \(\left(a+b\right)\frac{10-1}{10+1}\).a) Tìm a, b, c,...
Đọc tiếp

Cho một biểu thức, biết biểu thức là:

\(\left[\left(a+b\right)^3+\left(c-d\right)^3-\left(a+c\right)^3-\left(b-d\right)^3\right]\left(mn\right)^2=63504.\)

Các số cần tìm cho, biết:

- TRC của 4 số a, b, c, d là 4,5. TRC của 2 số a và c là 5. a hơn c 2 đơn vị, d bằng \(\frac{1}{2}b\).

- TRC của 4 số a, b, m, n là 5. Biết \(\frac{m}{a+c}=0,7\), tổng của a và b là a + b, tổng của m và n là \(\left(a+b\right)\frac{10-1}{10+1}\).

a) Tìm a, b, c, d, m và n.

b) Nếu thêm p vào bên phải của biểu thức, biết \(p\ne0\)và ở giữa p có 16 số chẵn, nhưng các số chẵn ≈ 7 ; 8. Các số chẵn chia hết cho 5. Tính giá trị của biểu thức mới.

c) Tính:

 \(am^2\left(5^3+abcd-\left(ab^2-cd^2\right)\right)+\left(\sqrt{\left(m+1\right)^{2c}}-\sqrt{\left(50c\right)^c\times2n}\right)..\)

d) Tính giá trị của X, biết rằng:

\(X=9ab-9cd+9mn+...+\frac{9mn}{8}.\)

Chứng minh rằng: \(X⋮45\)và giá trị của ... là số có tử số của số đó bé hơn tử số của số \(\frac{975}{4}\)là Y. Biết rằng:

\(Y=\frac{15-1}{15+1}\left(d^d-\frac{d}{m}\right)n\sqrt{c}.\)

 

0
13 tháng 12 2018

Vì x + y = 2 và x, y nguyên dương nên \(x=y=1\)

Khi đó A = 4.

Vậy Amin = 4

Y
2 tháng 2 2019

+ \(\left(a-b\right)^2\ge0\forall a,b\)

\(\Rightarrow a^2+b^2\ge2ab\forall a,b\)

Dấu "=" <=> a=b.

Do đó : \(\left\{{}\begin{matrix}1+\dfrac{x^2}{y^2}\ge\dfrac{2x}{y}\forall x,y\\1+\dfrac{y^2}{x^2}\ge\dfrac{2y}{x}\forall x,y\end{matrix}\right.\)

\(\Rightarrow A\ge\dfrac{2x}{y}\cdot\dfrac{2y}{x}=4\forall x,y\)

Dấu "=" xảy ra \(\Leftrightarrow\dfrac{x}{y}=\dfrac{y}{x}=1\)\(\Leftrightarrow x=y=1\)( do a + b = 2 )

Vậy Min A = 4 <=> x = y = 1

24 tháng 6 2017

Phân thức đại số

\(x^2-4x+5=x^2-4x+4+1=\left(x-2\right)^2+1\ge1>0\) với mọi giá trị của \(x\) nên giá trị của biểu thức luôn luôn âm với mọi giá trị khác 0 và khác -3 của \(x\)

25 tháng 7 2017

2) Đặt \(P=16x^4-40x^2y^3+25y^6\)

\(P=\left(4x^2\right)^2-2.4x^2.5y^3+\left(5y^3\right)^2\)

\(P=\left(4x^2-5y^3\right)^2\)

\(\Rightarrow P\ge0\forall x,y\in R\)

Vậy chọn D

25 tháng 7 2017

3) \(\left(x-3\right)^2\ge0\Rightarrow y\ge1\)

Miny=1 khi x=3