K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2016

a) \(\left(6x+5y\right)^2=36x^2+60x+25y^2\)

b) \(\left(4x-1\right)^2=16x^2-8x+1\)

c) \(\left(x+2\right)^2=x^2+4x+4\)

7 tháng 8 2016

a) \(\left(6x-5y\right)^2=36x^2-60xy+25y^2\)

b) \(\left(4x-1\right)^2=16x^2-8x+1\)

c) \(\left(x+2\right)^2=x^2+4x+4\)

d) \(x^2-64=\left(x-8\right)\left(x+8\right)\)

e) \(4x^2-64=\left(2x-8\right)\left(2x+8\right)\)

f) \(25x^2-4=\left(5x-2\right)\left(5x+2\right)\)

g) \(\left(x+1\right)^3=x^3+3x^2+3x+1\)

h) \(\left(x-3\right)^3=x^3-9x^2+27x-27\)

k) \(x^3+8=\left(x+2\right)\left(x^2-2x+4\right)\)

l) \(x^3-125=\left(x-5\right)\left(x^2+5x+25\right)\)

y) \(27y^3-1=\left(3y-1\right)\left(9y^2+3y+1\right)\)

7 tháng 8 2016

ai Giúp mình với

 

a: \(7\cdot3^x=5\cdot3^7+2\cdot3^7\)

\(\Leftrightarrow7\cdot3^x=7\cdot3^7\)

=>3x=37

hay x=7

b: \(4^{x+3}-3\cdot4^{x+1}=13\cdot4^{11}\)

\(\Leftrightarrow4^{x+1}\left(4^2-3\right)=13\cdot4^{11}\)

=>x+1=11

hay x=10

d: \(\left(x-1\right)^{13}=\left(x-1\right)^{12}\)

\(\Leftrightarrow\left(x-1\right)^{12}\left(x-2\right)=0\)

hay \(x\in\left\{1;2\right\}\)

a: \(-3xy^2+x^2y^2-5x^2y\)

\(=xy\left(-3y+xy-5x\right)\)

c: \(y^2+xy+y=y\left(y+x+1\right)\)

 

1: \(\dfrac{16^{11}\cdot5^{40}}{10^{41}}=\dfrac{2^{44}\cdot5^{40}}{2^{41}\cdot5^{41}}=\dfrac{2^3}{5^1}=\dfrac{8}{5}\)

2: \(\dfrac{3^7\cdot8^5}{6^6\cdot\left(-2\right)^{12}}=\dfrac{3^7\cdot2^{15}}{2^6\cdot3^6\cdot2^{12}}=\dfrac{3}{2^3}=\dfrac{3}{8}\)

25 tháng 10 2018

\(A=1+2+2^2+.....+2^{2018}\)

\(\Leftrightarrow2A=2+2^2+....+2^{2018}+2^{2019}\)

\(\Leftrightarrow2A-A=\left(2+2^2+....+2^{2019}\right)-\left(1+2+2^2+....+2^{2018}\right)\)

\(\Leftrightarrow A=2^{2019}-1< 2^{2019}\)

Vậy \(A< 2^{2019}\)

5 tháng 3 2021

Điều kiện \(\left\{{}\begin{matrix}\dfrac{4x-3x^2y-9xy^2}{x+3y}\ge0\\x+3y\ne0\end{matrix}\right.\)

Với \(3y\ge x\), hệ tương đương:

\(\left\{{}\begin{matrix}\left(x^4-2x^2+4\right)\left(x^2+2\right)=6x^5y\\\left(3y-x\right)^2=\dfrac{4x}{x+3y}-3xy\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^6+8=6x^5y\left(1\right)\\x^3+27y^3=4x\end{matrix}\right.\left(I\right)\)

Vì \(x=0\) thì hệ vô nghiệm nên \(x\ne0\), khi đó:

\(\left(I\right)\Leftrightarrow\left\{{}\begin{matrix}1+\dfrac{8}{x^6}=\dfrac{6y}{x}\\1+\dfrac{27y^3}{x^3}=\dfrac{4}{x^2}\end{matrix}\right.\)

Đặt \(\dfrac{3y}{x}=a,\dfrac{2}{x^2}=b\) ta được hệ:

\(\Leftrightarrow\left\{{}\begin{matrix}1+a^3=2b\\1+b^3=2a\end{matrix}\right.\)

Giải hệ này ta được \(a=b\Leftrightarrow\dfrac{3y}{x}=\dfrac{2}{x^2}\Leftrightarrow y=\dfrac{2}{3x}\)

\(\left(1\right)\Leftrightarrow x^6-4x^4+8=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{2}\\x=-\sqrt{2}\\x=\sqrt{1+\sqrt{5}}\\x=-\sqrt{1+\sqrt{5}}\end{matrix}\right.\)

TH1: \(x=\sqrt{2}\Rightarrow y=\dfrac{\sqrt{2}}{3}\)

TH2: \(x=-\sqrt{2}\Rightarrow y=-\dfrac{\sqrt{2}}{3}\)

TH3: \(x=\sqrt{1+\sqrt{5}}\Rightarrow y=\dfrac{2}{3\sqrt{1+\sqrt{5}}}\)

TH4: \(x=-\sqrt{1+\sqrt{5}}\Rightarrow y=-\dfrac{2}{3\sqrt{1+\sqrt{5}}}\)

Đối chiếu với các điều kiện ta được \(\left(x;y\right)=\left(-\sqrt{1+\sqrt{5}};-\dfrac{2}{3\sqrt{1+\sqrt{5}}}\right)\)

\(\dfrac{x^{n-1}-3x^2}{2x^2}=\dfrac{1}{2}x^{n-3}-\dfrac{3}{2}\)

Để đây là phép chia hết thì n-3>=0

hay n>=3