K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét 2 tam giác vuông ABD và tam giác HBD có:

BD chung

\(\widehat{ABD=}\widehat{HBD}\)(BD p/g của B)

\(\Rightarrow\)Tam giác HBD=Tam giác ABD(cạnh huyền-góc nhọn)

b,Vì Tam giác HBD=Tam giác ABD(cạnh huyền-góc nhọn)

\(\Rightarrow AD=DH\)

mà DH<DC(vì trong tam giác vuông cạnh góc vuông luôn luôn bé hơn cạnh huyền)

\(\Rightarrow\)AD<DC

c, Ta có AD=DH(câu a) \(\Rightarrow AD^2=DH^2\)

AK=HC(gt) \(\Rightarrow\)\(AK^2=HC^2\)

\(\Rightarrow KD^2=DC^2\Rightarrow KD=DC\)

Vậy tam giác DKC là tam giác cân tại D

Hok tốt

Hình đấy nhá

Quên mất !

Hok tốt

a: Xét ΔABD vuông tại A và ΔHBD vuông tại H có 

BD chung

\(\widehat{ABD}=\widehat{HBD}\)

Do đó: ΔABD=ΔHBD

b: Ta có: ΔABD=ΔHBD

nên DA=DH

mà DH<DC

nên DA<DC

c: Xét ΔDAK vuông tại A và ΔDHC vuông tại H có 

DA=DH

AK=HC

Do đó: ΔDAK=ΔDHC

Suy ra: DK=DC

hay ΔDKC cân tại D

d: Ta có: ΔDAK=ΔDHC

nên \(\widehat{ADK}=\widehat{HDC}\)

\(\Leftrightarrow\widehat{HDC}+\widehat{KDC}=180^0\)

hay H,D,K thẳng hàng

4 tháng 2 2022

Vẽ hình giúp em với ạ em cảm ơn !
 

13 tháng 4 2019

a) Xét hai tam giác vuông ABD và HBD có: BD là cạnh chung

DA = DH (D nằm trên tia phân giác của góc B)

⇒ΔABD=ΔHBD⇒ΔABD=ΔHBD (cạnh huyền – cạnh góc vuông)

b) Từ câu a) có ΔABD=ΔHBD⇒AB=BHΔABD=ΔHBD⇒AB=BH

Suy ra, ΔBKCΔBKC cân tại B.

Khi đó, BD vừa là phân giác, vừa là đường cao xuất phát từ đỉnh B ⇒D⇒D là trực tâm của ΔBKC.ΔBKC.

Mặt khác, ΔCAK=ΔKHC(c–g–c)ΔCAK=ΔKHC(c–g–c)

⇒KH⊥BC⇒KH⊥BC

⇒⇒ KH là đường cao kẻ từ đỉnh K của .. nên KH phải đi qua trực tâm H.

Vậy ba điểm K, D, H thẳng hàng.

25 tháng 2 2020

a) Xét tgiac ABD và EBD có:

+ AB = BE

+ BD chung

+ góc ABD = EBD 

=> Tgiac ABD = EBD (c-g-c)

=> đpcm

b) Tgiac ABD = EBD (cmt) => AD = DE (hai cạnh t/ứng)

Xét tgiac ADE có AD = DE => Tgiac ADE cân tại D

=> đpcm

c) AH \(\perp\)BC, DE\(\perp\)BC => AH\(//\)DE

=> góc HAE = AED (2 góc SLT do AH\(//\)DE)

Mà tgiac ADE cân tại D (cmt) => góc AED = DAE

=> góc HAE = DAE

=> AE là tia pgiac góc HAC (đpcm)

d) Xét tgiac ADK và EDC có:

+ góc DAK = DEC = 90o

+ góc ADK = EDC (2 góc đối đỉnh)

+ AD = DE (do tgiac ABD = EBD)

=> Tgiac ADK = EDC (g-c-g)

=> AK = EC và KD = DC (2 cạnh t/ứng)

=> Tgiac KDC cân tại K => Góc DCK = (180o- góc KDC) /2

Tgiac AED cân tại D => góc EAD = (180o- góc ADE) /2

Mà góc ADE = KDC (2 góc đối đỉnh) => góc DCK = EAD

Mà 2 góc này SLT => AE \(//\)KC

=> đpcm

a, Xét △ABD vuông tại A và △HBD vuông tại H

Có: ABD = HBD (gt)

       DB là cạnh chung

=> △ABD = △HBD (ch-gn)

b, Xét △ADK vuông tại A và △HDC vuông tại H

Có: AK = HC (gt)

       AD = HD (△ABD = △HBD)

=> △ADK = △HDC (cgv)

=> ADK = HDC (2 góc tương ứng)

Ta có: CDH + HDA = 180o (2 góc kề bù)

=> ADK + HDA = 180o

=> KDH = 180o

=> 3 điểm K, D, H thẳng hàng.

 

a: Xet ΔBAC vuông tại A và ΔBAD vuông tại A có

BA chung

AC=AD

=>ΔBAC=ΔBAD

=>BC=BD

=>ΔBCD cân tại B

b: Xét ΔBDC có BM/BD=BN/BC

nên MN//CD