K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 1 2018

Chọn B

Gọi ba số hạng liên tiếp của cấp số cộng là a - 2x; a ; a+2x với công sai d=2x.

Theo giả thiết ta có:

a − 2 x + a + a + 2 x = − 9 ( a - 2 x ) 2 + a 2 + a + 2 x 2 = 29 ⇔ 3 a = − 9 3 a 2 + ​ 8 x 2 = 29 ⇔ a = − 3 8 x 2 = 2 ⇔ a = − 3 x = ± 1 2

với 

x =    1 2     ⇒ u 1 =    a − 2 x =    − 3 − 2.    1 2 =   − 4

với 

x =    − 1 2     ⇒ u 1 =    a − 2 x =    − 3 − 2.    − 1 2 =   − 2

 

Vậy số hạng đầu tiên là -4 hoặc -2 

14 tháng 5 2019

25 tháng 5 2017

Gọi ba số đó là \(x,y,z\). Do ba số là các số hạng thứ hai, thứ 9 và thứ 44 của một cấp số cộng nên:
\(x;y=x+7d;z=x+42d\). (Với d là công sai của cấp số cộng).
Ta có: \(x+y+z=x+x+7d+x+42d=3x+49d=217\).
Mặt khác x, y, z là các số hạng liên tiếp của một cấp số nhân nên:
\(y^2=xz\)\(\Leftrightarrow\left(x+7d\right)^2=x\left(x+42d\right)\)\(\Leftrightarrow-28xd+49d^2=0\)\(\Leftrightarrow7d\left(-4x+7d\right)=0\)\(\Leftrightarrow\left[{}\begin{matrix}d=0\\-4x+7d=0\end{matrix}\right.\).
Với \(d=0\) suy ra \(x=y=z=\dfrac{217}{3}\).
Suy ra: \(n=820:\dfrac{217}{3}=\dfrac{2460}{217}\notin N\).
Với \(4+7d=0\). Ta có hệ:
\(\left\{{}\begin{matrix}4x+7d=0\\3x+49d=217\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=7\\d=4\end{matrix}\right.\).
Vậy \(u_1=7-4=3\).
\(S_n=\dfrac{\left[2u_1+\left(n-1\right)d\right]n}{2}=\dfrac{\left[2.3+\left(n-1\right)4\right]n}{2}=820\)
 \(\Rightarrow n=20\left(tm\right)\).
 

8 tháng 11 2017

Đáp án B

9 tháng 5 2017

Chọn A

Giả sử bốn số hạng đó là a − 3 x ; a − x ; a + x ; a + 3 x  với công sai là d =2x. Khi đó, ta có:

a − 3 x + a − x + a + x + a + 3 x = 20 a − 3 x 2 + a − x 2 + a + x 2 + a + 3 x 2 = 120

⇔ 4 a = 20 4 a 2 + 20 x 2 = 120 ⇔ a = 5 x = ± 1

Vậy bốn số cần tìm là 2; 4; 6; 8.

Tổng của 2 số hạng đầu tiên là:  2+ 4= 6.

24 tháng 5 2017

Gọi 3 số đó là: \(a,b,c\). Theo bài ra ta có:\(\left\{{}\begin{matrix}a+b+c=114\\b^2=ac\end{matrix}\right.\). (*)
Mặt khác nó lần lượt là số hạng thứ nhất, thứ tư và thứ hai mươi lăm của một cấp số cộng nên: \(a=u_1;b=u_1+3d;c=u_1+24d\). ( với \(u_1\) là số hạng đầu của cấp số cộng, d là công sai).
Thay vào (*) ta có:
\(\left\{{}\begin{matrix}u_1+u_1+3d+u_1+24d=114\\\left(u_1+3d\right)^2=u_1\left(u_1+24d\right)\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}u_1+9d=38\\18u_1d-9d^2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}u_1+9d=38\\9d\left(2u_1-d\right)=0\end{matrix}\right.\).
Nếu \(d=0\) thì a,b,c là ba số hạng của một cấp số cộng không đổi nên \(a=b=c=\sqrt[3]{114}\).
Nếu \(d\ne0\) suy ra: \(\left\{{}\begin{matrix}u_1+9d=38\\2u_1-d=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}u_1=2\\d=4\end{matrix}\right.\).
Khi đó \(a=2;b=2+3.4=16;c=2+24.3=74\).


26 tháng 12 2017

Đáp án C

23 tháng 12 2018

Đáp án C

Gọi d = 2 x  là công sai

ta có bốn số là  a - 3 x , a - x , a + x , a + 3 x

Khi đó, từ giả thiết ta có:

⇔ 1 , 3 , 5 , 7 7 , 5 , 3 , 1

Tổng bình phương của số hạng đầu và cuối là  1 2 + 7 2 = 50

AH
Akai Haruma
Giáo viên
16 tháng 9 2023

Lời giải:

Gọi số hạng đầu tiên là $a$ và công sai $d$. Khi đó số hạng thứ 2 và 3 lần lượt là $a+d, a+2d$

Theo bài ra ta có:

$a+(a+d)+(a+2d)=12$

$\Rightarrow a+d=4$

$a^2+(a+d)^2+(a+2d)^2=66$

$\Leftrightarrow 3a^2+5d^2+6ad=66$

$\Leftrightarrow 3(4-d)^2+5d^2+6(4-d)d=66$

$\Leftrightarrow 2d^2-18=0$

$\Leftrightarrow d=\pm 3$

Nếu $d=3$ thì $a=1$. Khi đó 3 số cần tìm là $1,4, 7$

Nếu $d=-3$ thì $a=7$. Khi đó 3 số cần tìm là $7, 4, 1$

 

16 tháng 9 2023

\(S_3=\dfrac{3\left[2u_1+2d\right]}{2}\)

\(\Leftrightarrow2u_1+2d=\dfrac{2S_3}{3}\)

\(\Leftrightarrow2\left(u_1+d\right)=\dfrac{2S_3}{3}\)

\(\Leftrightarrow u_1+d=\dfrac{S_3}{3}=\dfrac{12}{3}=4\)

\(\Rightarrow\left\{{}\begin{matrix}u_1=1\\d=3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}u_2=4\\u_3=7\end{matrix}\right.\)

mà \(u_1^2+u_2^2+u_3^2=1^2+4^2+7^2=66\) (thỏa đề bài)

Vậy 3 số hạng liên tiếp của 1 cấp số cộng là : \(1;4;7\)

29 tháng 4 2017

Chọn đáp án B