Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có sơ đồ sau:
Nhìn vào sơ đồ ta có như sau:
Khi người đi xe đạp chở người đi bộ 2 đến D thì thả người đi bộ 2 ở đó.
Trong khi đó người đi bộ 1 đã đến 1 điểm E nào đó nằm trong khoảng AC.
Khi người đi xe đạp quay lại để đón người đi bộ 1, thì 2 người gặp nhau ở C.
Khi người đi xa đạp và người đi bộ 1 gặp nhau ở C thì người đi bộ 2 từ D đã đi đến 1 điểm F nào đó trong khoảng DB.
Sau đó người đi xe đạp đèo người đi bộ 1 từ C về B thì cùng lúc đó gặp người đi bộ 2 ở B.
Ta có:
Thời gian người đi xe đạp đi từ A -> D -> C là :
Thời gian người đi bộ 1 đi từ A -> C là:
Mà thời gian người đi xe đạp đi từ A -> C -> D bằng thời gian người đi bộ đi từ A -> C [ do xuất phát cùng 1 thời điểm, từ A, và gặp nhau tại C ].
(1)
Ta lại có: Thời gian người đi xe đạp từ D -> C -> B bằng thời gian người đi bộ 2 đi từ D -> B [ do cùng xuất phát 1 thời điểm, cùng đi từ D, và cùng gặp tại B ]
(2)
Từ (1) và (2) ta có:
Mà (km)
km
Ta tính tổng thời gian = thời gian người đi xe đạp đi đến D + thời gian người đi bộ 2 đi về B.
( tự tính nhé, đến đoạn này nhác quá )
Gọi t là thời gian đi của 3 xe
Goi D , C lần lượt là nơi người 1 để người 2 đi bộ và là nơi người 1 và 3 gặp nhau
Vì xe 2 và 3 đều đi bộ và cung đi trong thời gian t nên AC = BD
=> CD = AB - (AC+BD)=AB - 2 BD
Thời gian xe 2 đi là :
\(t=\dfrac{AD}{v_2}+\dfrac{BD}{v_1}=\dfrac{20-BD}{v_2}+\dfrac{BD}{v_1}\) (1)
Thời gian xe 1 đi là :
\(t=\dfrac{AD+BD+2CD}{v_2}\)\(=\dfrac{AD+BD+2CD}{v_2}=\dfrac{AB+2CD}{v_2}=\dfrac{AB+2\left(AB-2BD\right)}{v_2}=\dfrac{3AB-4BD}{v_2}\)
(2)
Từ (1) vả (2) , ta có:
\(\dfrac{20-BD}{v_2}+\dfrac{BD}{v_1}=\dfrac{3AB-4BD}{v_2}\)
\(< =>\dfrac{20-BD}{20}+\dfrac{BD}{4}=\dfrac{3.20-4BD}{20}\)
Giải pt , tá dược :BD= 5
Thay BD = 5 vao (1) , ta duoc : t = 2(h)
Vậy thời gian .......................
S=20=V1.T1+V2 (t-t1)=4t1+20.(t-t1) (1)
ABCD
Gọi C là vị trí người thứ hai xuống xe để đi bộ, D là vị trí người thứ ba lên xe để đi tiếp đến B
Tổng quãng đường người này đi được là :
20t=AC+CD+DB
Mà DB=AC=AB-CB=S-V1.V1
AD=CB=V1.T1
Nên CD=AB-AD-CB=S-2v1.t1
Vậy 20t+2. (S-2v1t1)+S-2v1t1=3s-4v1t1=60-16V1. (2)
Từ 1 và 2 ta đc : t=2h
Bài 2:
phương trình chuyển động (coi mốc thời gian bằng là thời điểm xe 1 xuất phát.......)
xe 1 : S1 = 8t
xe 2 : S2 = 12 (t-1/4 ) vì xe 2 đi sau xe1 15' bằng 1/4 giờ.
xe 3 : S3 = v3 (t-3/4 ) vì xe 3 đi sau xe2 30',tức sau xe1 45' bằng 3/4 giờ.
Tại thời điểm xe 1 gặp xe 3 : S1=S3 <=> v3(t-3/4) = 8t <=> v3 = 8t/(t-3/4 ) (1)
Sau 30' thì cách đều,tức t' = t +0.5. ta có : S3=( S1 + S2 )/2
<=> v3( t+0.5-3/4) = < 8(t+0.5)+12(t+0.5-1/4) >/2 (2)
từ (1) và (2) thì ta được t =7/4, thay vào 1 ta được v3= 14 km/h
bài 4:
Giải :
a.Sau khi tăng tốc thêm 3 km/h thì đến nơi sớm hơn dự kiến là 1h ,mà S là như nhau nên theo bài ra ta có:
V1.t = (V1 +3 ).(t -1).
12.t = (12+3 ).(t -1).
12.t = 15.t -15.
15 = 15.t – 12.t.
5 = t.
b. Gọi t’1 là thời gian đi quãng đường s1: t’1 = S1/V1 ( / : là chia).
Thời gian sửa xe : t = 15 phút = ¼ h.
Thời gian đi quãng đường còn lại : t’2 = (S1-S2)/V2.
Theo bài ra ta có : t1 – (t’1 + ¼ + t’2) = 30 ph = ½ h.
T1 – S1/V1 – ¼ - (S-S1)/V2 = ½. (1).
S/V1 – S/V2 – S1.(1/V1- 1/V2) = ½ +1 /4 =3/4 (2).
Từ (1) và (2) suy ra: S1.(1/V1 – 1/V2) = 1- ¾ = ¼.
Hay S1 = ¼ . (V1- V2)/(V2-V1) = ¼ . (12.15)/(15-12) = 15 km.
bài 1:
a) Lúc xe từ B xuất phat thì xxe từ A đi được quáng đường: S=40 km
*/PTCĐ:
X1= 40+ 40*t
X2= 25*t