Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số HS lớp 7A,7B,7C lần lượt là a,b,c(HS)(a,b,c∈N*,a,b,c<144)
Ta có: \(\left(1-\dfrac{1}{4}\right)a=\left(1-\dfrac{1}{7}\right)b=\left(1-\dfrac{1}{3}\right)c\)
\(\Rightarrow\dfrac{3}{4}a=\dfrac{6}{7}b=\dfrac{2}{3}c\Rightarrow\dfrac{a}{\dfrac{4}{3}}=\dfrac{b}{\dfrac{7}{6}}=\dfrac{c}{\dfrac{3}{2}}\)
Áp dụng t/c dtsbn:
\(\dfrac{a}{\dfrac{4}{3}}=\dfrac{b}{\dfrac{7}{6}}=\dfrac{c}{\dfrac{3}{2}}=\dfrac{a+b+c}{\dfrac{4}{3}+\dfrac{7}{6}+\dfrac{3}{2}}=\dfrac{144}{4}=36\)
\(\Rightarrow\left\{{}\begin{matrix}a=\dfrac{4}{3}.36=48\\b=\dfrac{7}{6}.36=42\\c=\dfrac{3}{2}.36=54\end{matrix}\right.\)(nhận)
Vậy...
Gọi số học sinh ban đầu của lớp 7A,7B.7C lần lượt là x,y, z (học sinh)
ĐK: x; y; z \(\in N\cdot\) và x; y; z < 144
+) Ba lớp 7A,7B,7C có tất cả 144 học sinh => x + y + z = 144
+) Nếu rút ở lớp 7A đi 1/4 học sinh, rút ở lớp 7B đi 1/7 học sinh, rút ở lớp 7C đi 1/3 học sinh thì số học sinh còn lại của 3 lớp bằng nhau.
Nên ta có 3/4*x = 6/7*y = 2/3*z
\(\frac{3}{24}x=\frac{6}{42}y=\frac{2}{18}z\Rightarrow\frac{x}{8}=\frac{y}{7}=\frac{z}{9}=\frac{x+y+z}{8+7+9}=\frac{144}{24}=6\)
\(\hept{\begin{cases}x=48\\y=42\\z=54\end{cases}}\)
(Thỏa mãn điều kiện)
Vậy số học sinh lúc đầu của các lớp 7A, 7B, 7C lần lượt là 48 học sinh, 42 học sinh, 54 học sinh.