Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{4}=\dfrac{b}{3}=\dfrac{c}{2}=\dfrac{a-b}{4-3}=2\)
Do đó: a=8; b=6; c=4
Gọi số máy san đất của ba đội lần lượt là a ; b ; c \(\left(a;b;c\ne0\right)\)
Vì đội thứ nhất nhiều hơn đội thứ hai 2 máy \(\Rightarrow a-b=2\)
Vì đội thứ nhất hoàn thành công việc trong 3 ngày, đội thứ hai trong 4 ngày, đội thứ 3 trong 6 ngày \(\Rightarrow3a=4b=6c\).
Trên cùng một khối lượng công việc như nhau, số máy san đất và thời gian là 2 đại lượng tỉ lệ nghịch :
\(\Rightarrow\frac{a}{\frac{1}{3}}=\frac{b}{\frac{1}{4}}=\frac{c}{\frac{1}{6}}\) . Áp dụng tính chất dãy tỉ số bằng nhau, ta có :
\(\frac{a}{\frac{1}{3}}=\frac{b}{\frac{1}{4}}=\frac{c}{\frac{1}{6}}=\frac{a-b}{\frac{1}{3}-\frac{1}{4}}=\frac{2}{\frac{1}{12}}=2\div\frac{1}{12}=2\times\frac{12}{1}=24\)
\(\Rightarrow a=24\div3=8\) \(b=24\div4=6\) \(c=24\div6=4\)
Vậy đội thứ nhất có 8 máy, đội thứ hai có 6 máy, đội thứ ba có 4 máy.
Gọi số máy của cả đội thứ nhất; đội thứ hai; đội thứ ba lần lượt là x(máy); y(máy); z(máy) (x; y; z là số tự nhiên khác 0)
Ta có số máy và số ngày làm việc tỉ lệ nghịch với số máy (vì năng suất của mỗi máy là như nhau
nên 2x = 3y = 4z hay \(\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{4}}\)
mà y - z = 3 (đội thứ hai nhiều hơn đội thứ ba 3 máy)
Theo tính chất dãy tỉ số bằng nhau ta có
\(\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{4}}=\frac{y-z}{\frac{1}{3}-\frac{1}{4}}=\frac{3}{\frac{1}{12}}=36\)
do đó x = 1/2 . 36 = 18
y = 1/3 . 36 = 12
z = 1/4 . 36 = 9
Vậy số máy của cả ba đội lần lượt là: 18(máy); 12(máy); 9(máy)
Số máy | a | b | c |
Số ngày | 2 | 3 | 4 |
Gọi 3 đội máy san đất lần lượt là a,b,c ( a, b, c >0)
Vì số máy và số ngày là 2 đại lượng tỉ lệ nghịch nên
Ta có :2.a=3.b=4.c\(\Rightarrow\frac{2a}{12}=\frac{3b}{12}=\frac{4c}{12}\)\(\)
\(\)Hay:\(\frac{a}{6}=\frac{b}{4}=\frac{c}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\frac{a}{6}=\frac{b}{4}=\frac{c}{3}=\frac{b-c}{4-3}=\frac{3}{1}=3\)
\(\frac{a}{6}=1\Rightarrow a=6\)
\(\frac{b}{4}=1\Rightarrow b=4\)
\(\frac{c}{3}=1\Rightarrow c=3\)
Vậy đội 1, 2, 3 có số máy lần lượt là :6 máy, 4 máy, 3 máy
Gọi số máy của 3 đội là 1 , 2, 3, là a , b ,c ( máy )
=> a - b = 2
Do các máy có cùng năng suất và khối lượng công việc mỗi đội như nhau nên : 3a = 4b = 6c
=> 3a/24 = 4b/24 = 6c/24 => a/8 = b/6 = c/4
Áp dụng tính chất dãy tỉ số bằng nhau ta có : a/8 = b/6 = c/4 = a - b/8 - 6 = 2/2 = 1
a/8 = 1 => a = 8
b/6 = 1 => b = 6
c/6 = 1 =>
Gọi x,y,z lần lượt là các máy san đất của đội 1 ,đội 2,đội 3.
Áp dụng tính chất của dãy tỷ số bằng nhau, ta có:
x/4=y/6=z/8 và x-y=12
=>x/8=y/6=z/4
Đặt x/8=y/6=z/4=k
=>x=8.k ; y=6.k; z=4.k
Thay x=8.k ; y=6.k vào. x-y=12,được:
8k-6k=12=> k=6 thì :
x=8.6=48
y=6.6=36
z=4.6=24
Vậy đội 1 có số máy là:48 máy
Đội 2 có số máy là:36 máy
Đội 3 có số máy là:24 máy
Cho 1 K nhé!
Đ s:
Mik chịu chết bài này luôn !
Đối với mik thì hơi khó !
Thông cảm
Ai thấy đúng cho !
Gọi x, y, z (máy) lần lượt là số máy san đất của ba đội 1, 2, 3 (x, y, z \(\in\)N*).
Vì các máy có cùng năng suất và ba đội làm 3 khối lượng công việc như nhau nên số máy cần để hoàn thành công việc sẽ tỉ lệ nghịch với số ngày hoàn thành công việc
=> 3x = 5y = 6z
=> \(\frac{x}{\frac{1}{3}}=\frac{y}{\frac{1}{5}}=\frac{z}{\frac{1}{6}}\)và x + y + z = 21
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x}{\frac{1}{3}}=\frac{y}{\frac{1}{5}}=\frac{z}{\frac{1}{6}}=\frac{x+y+z}{\frac{1}{3}+\frac{1}{5}+\frac{1}{6}}=\frac{21}{\frac{7}{10}}=21.\frac{10}{7}=30\)
=> \(\hept{\begin{cases}\frac{x}{\frac{1}{3}}=30\\\frac{y}{\frac{1}{5}}=30\\\frac{z}{\frac{1}{6}}=30\end{cases}\Rightarrow\hept{\begin{cases}x=10\\y=6\\z=5\end{cases}}}\)
Vậy đội I có 10 máy, đội II có 6 máy, đội III có 5 máy.